Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3
2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2
+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2
=> n.(n + 5) luôn chia hết cho 2
3) A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2
=> A không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
a) Vd 1 và 4. Cả 1 và 4 đều ko chia hết cho 5 nhưng tổng chia hết cho 5
b) Vd: 5+1=6. Tổng ko chia hết cho 5, nhưng có 1 số hạng chia hết cho 5
1) A= 43 . 52 / 82
A = (22)3 . 25 / (23)2
A = 26 . 25 / 26
A = 25
2)B) Do a không chia hết cho 5 nên a2 không chia hết cho 5
=> a2 chia 5 dư 1 hoặc 4
- Nếu a2 chia 5 dư 1 => a chia 5 dư 1 hoặc 4
+Với a chia 5 dư 1 => a - 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
+ Với a chia 5 dư 4 => a + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
- Nếu a2 chia 5 dư 4 => a^2 + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
=> đpcm
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
\(1+5+5^2+5^3+...+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)
\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)
\(=6+5^2.6+5^4.6+...+5^{100}.6\)
\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)
\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)