K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3

2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2

+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2

=> n.(n + 5) luôn chia hết cho 2

3) A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2

=> A không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

16 tháng 8 2016

a) Vd 1 và 4. Cả 1 và 4 đều ko chia hết cho 5 nhưng tổng chia hết cho 5

b) Vd: 5+1=6. Tổng ko chia hết cho 5, nhưng có 1 số hạng chia hết cho 5

16 tháng 8 2016

có ai giúp mình đi

17 tháng 6 2016

1) A= 43 . 52 / 82

A = (22)3 . 25 / (23)2

 A = 26 . 25 / 26

A = 25

2)B) Do a không chia hết cho 5 nên a2  không chia hết cho 5

=> a2 chia 5  dư 1 hoặc 4

- Nếu a2 chia 5 dư 1 => a chia 5 dư 1 hoặc 4

+Với a chia 5 dư 1 => a - 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5

+ Với a chia 5 dư 4 => a + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5

- Nếu a2 chia 5 dư 4 => a^2 + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5

=> đpcm

19 tháng 6 2016

bạn ơi dpcm là cái j z 

14 tháng 7 2016

Suốt ngày nôn ọe . Nếu bn ko bít làm thì đừng trả lời!!! bucqua

17 tháng 7 2016

1) 

a) 1+5+5^2+5^3+....+5^101 

=(1+5)+(5^2+5^3)+....+(5^100+5^101)

=6+5^2.(1+5)+...+5^100(1+5)

=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6 

b) 2+2^2+2^3+...+2^2016

=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)

=2.31+2^6.31+...+2^2012.31 chia hết cho 31

Tương tự như câu a lên mk rút gọn 

2) còn bài a kì quá abc deg là sao nhỉ 

b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8 

bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại 

 

 

 

14 tháng 7 2016

\(1+5+5^2+5^3+...+5^{101}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)

\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)

\(=6+5^2.6+5^4.6+...+5^{100}.6\)

\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)

\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)

14 tháng 7 2016

câu b với bài 2 nữa nhé rùi mình tick cho

 

16 tháng 7 2016

không trả lời

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)