Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{1}{64}\cdot64=1\\ b,=\left(\dfrac{3}{4}\cdot\dfrac{4}{3}\right)^3+\dfrac{1}{3}=1+\dfrac{1}{3}=\dfrac{4}{3}\\ c,=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\\ d,=\dfrac{1}{2^{2004}}\cdot9^{1002}\\ =\dfrac{9^{1002}}{4^{1002}}=\left(\dfrac{3}{2}\right)^{1002}\)
a. (0,125)2 . 64
= \(\dfrac{1}{64}.\dfrac{64}{1}\)
= \(\dfrac{1.1}{1.1}=1\)
ta có P(x)=x^2+ax+b ; Q(x)=x^2+cx+d
ta có x1 và x2 là nghiêm của P(x)Dán
nên \(x_1^2+ax_1+b=0;x_2^2+ax_2+b=0\)
\(\Rightarrow x_1^2=-ax_1-b\) và \(x_2^2=-ax_2-b\) (1)
Ta có x1,x2 là nghiêm của Q(x)
nên \(x_1^2+cx_1+d=0;x_2^2+cx_2+d=0\)
\(\Rightarrow x_1^2=-cx_1-d\)và \(x_2^2=-cx_2-d\) (2)
Từ (1) và (2) suy ra \(-ax_1-b=-cx_1-d\\ -ax_2-b=-cx_2-d\)
Do đó \(ax_1+b=cx_1+d\\ ax_2+b=+cx_2+d\)
Suy ra\(x_1^2+ax_1+b=x^2_1+cx_1+d\\ x^2_2+ax_2+b=x^2_2+cx_2+d\)
Nên P(x)=Q(x)
Q(x) =x2 +ax + b
P(x) = x2 +cx + d
Vì x1;x2 đều là nghiệm của P(x); Q(x)
=>x1;x2 là nghiệm của : P(x) - Q(x)=(c-a)x +(d-b)
=> PT: (c-a)x +(d-b) =0 có 2 nghiệm x1;x2
=>\(\left\{{}\begin{matrix}c-a=0\\d-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\)
Nên => P(x) = Q(x) dpcm
Câu 7
a,Xét \(\Delta ICA\) và \(\Delta ICB\) ta có :
\(AC=CB\) ( do \(\Delta ABC\) cân tại \(C\) nên 2 cạnh bên bằng nhau )
\(\widehat{CAI} = \widehat{CBI}\) ( hai góc ở đáy )
\(AI=IB \)(do \(I\) là trung điểm của \(AB\))
\(\Rightarrow\Delta ICA=\Delta ICB\left(c.g.c\right)\)
b,Ta có \(CI \) là trung tuyến suất phát từ đỉnh \(C\)
\(\Rightarrow CI\perp AB\)(tính chất đường trung tuyến trong tam giác cân)
c, Áp dụng định lý \(Pi-ta-go\) vào tam giác vuông \(CIA\) ta có :
\(AC^2=CI^2+IA^2\Rightarrow AC=\sqrt{CI^2+IA^2}\)
\(\Leftrightarrow AC=\sqrt{12^2+5^2}=13\)
\(\Rightarrow AC=BC=13\left(cm\right)\)
Chu vi \(\Delta ABC\) là
\(AC+CB+AB=13+13+10=36\left(cm\right)\)
b: Ta có: \(47\dfrac{1}{9}:\left(-\dfrac{5}{2}\right)-27\dfrac{1}{9}:\left(-\dfrac{5}{2}\right)\)
\(=\left(47+\dfrac{1}{9}\right)\cdot\dfrac{-2}{5}-\left(27+\dfrac{1}{9}\right)\cdot\dfrac{-2}{5}\)
\(=20\cdot\dfrac{-2}{5}\)
=-8
Nếu \(\Delta ABC=\Delta DEF\) thì \(EF=BC\) (2 cạnh tương ứng).
Chúc bạn học tốt!
\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
\(=\frac{-9}{10}.\frac{-10}{11}.\frac{-11}{12}...\frac{-98}{99}.\frac{-99}{100}\)
\(=-\frac{9.10.11....98.99}{10.11.12...99.100}=-\frac{9}{100}\)
\(\dfrac{x}{6}=\dfrac{7}{4}\Rightarrow x=\dfrac{6\cdot7}{4}=\dfrac{21}{2}\\ \dfrac{3}{x}=\dfrac{21}{17}\Rightarrow x=\dfrac{3\cdot17}{21}=\dfrac{17}{7}\)