Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x(12x-4)-(4x-3)(9x+4) = 9
36x2 -12x-(36x2 -16x-27x-12) = 9
36x2 -12x-36x2 -16x+27x+12 = 9
-x = 9-12
-x = -3
x= -3 : -1
x= 3
vậy x= 3
Đề nó yêu cầu cái gì thì tìm cái nấy đừng có cop mạng :)))))))))
Pain
\(D=2x^2-6x\)
\(D=2.\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{9}{2}\)
\(D=2.\left(x-\frac{3}{2}\right)^2\le-\frac{9}{2}\)
\(\Rightarrow Max_D=-\frac{9}{2}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Bài 3:
\(\frac{3n+1}{5n+2}\)
Ta có : (3n +1) * 5 =15n + 5
(5n+2) *3 = 15n + 6
Mà : 15n + 6 - (15n + 5 ) =1
=>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)
Lời giải:
Đặt $A=x^{2011}+x^{2010}+....+x+1$
$Ax=x^{2012}+x^{2011}+...+x^2+x$
$\Rightarrow Ax-A=x^{2012}-1$
$\Rightarrow A=\frac{x^{2012}-1}{x-1}$
$B=x^{502}+x^{501}+...+x+1$
$Bx=x^{503}+x^{502}+....+x^2+x$
$\Rightarrow Bx-B=x^{503}-1$
$\Rightarrow B=\frac{x^{503}-1}{x-1}$
Khi đó: $A:B = \frac{x^{2012}-1}{x-1}: \frac{x^{503}-1}{x-1}=\frac{x^{2012}-1}{x^{503}-1}=\frac{(x^{503})^4-1}{x^{503}-1}$
Đặt $x^{503}=a$ thì:
$A:B=\frac{a^4-1}{a-1}=a^3+a^2+a+1$
$\Rightarrow A\vdots B$
\(x^2+4y^2+9-4xy-6x+12y\)
\(=\left(x^2-4xy+4y^2\right)+\left(-6x+12y\right)+9\)
\(=\left(x-2y\right)^2-6\left(x-2y\right)+9\)
\(=\left(x-2y-3\right)^2\)
a: ĐKXĐ: \(x\notin\left\{2;-2;0\right\}\)
b: \(P=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{-x^2\left(x-2\right)}{x\left(x-3\right)}\)
\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{4x^2-8x}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)
Bài 3:
ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
a) Ta có: \(A=\left(\dfrac{x+1}{x-2}+\dfrac{x}{x+2}+\dfrac{2x^2+3}{x^2-4}\right):\left(1-\dfrac{x-3}{x+2}\right)\)
\(=\left(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x^2+3}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x+2}{x+2}-\dfrac{x-3}{x+2}\right)\)
\(=\dfrac{x^2+3x+2+x^2-2x+2x^2+3}{\left(x+2\right)\left(x-2\right)}:\dfrac{x+2-x+3}{x+2}\)
\(=\dfrac{4x^2+x+5}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+2}{5}\)
\(=\dfrac{4x^2+x+5}{5\left(x-2\right)}=\dfrac{4x^2+x+5}{5x-10}\)
b) Vì x=-1 thỏa mãn ĐKXĐ nên Thay x=-1 vào biểu thức \(A=\dfrac{4x^2+x+5}{5x-10}\), ta được:
\(A=\dfrac{4\cdot\left(-1\right)^2-1+5}{5\cdot\left(-1\right)-10}=\dfrac{4-1+5}{-5-10}=\dfrac{-8}{15}\)
Vậy: Khi x=-1 thì \(A=-\dfrac{8}{15}\)
c) Để A=-3 thì \(\dfrac{4x^2+x+5}{5x-10}=-3\)
\(\Leftrightarrow4x^2+x+5=-3\left(5x-10\right)\)
\(\Leftrightarrow4x^2+x+5=-15x+30\)
\(\Leftrightarrow4x^2+16x-25=0\)
\(\Leftrightarrow\left(2x\right)^2+2\cdot2x\cdot4+16-41=0\)
\(\Leftrightarrow\left(2x+4\right)^2=41\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+4=\sqrt{41}\\2x+4=-\sqrt{41}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\sqrt{41}-4\\2x=-\sqrt{41}-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{41}-4}{2}\left(nhận\right)\\x=\dfrac{-\sqrt{41}-4}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: Khi A=-3 thì \(x\in\left\{\dfrac{\sqrt{41}-4}{2};\dfrac{-\sqrt{41}-4}{2}\right\}\)
Camr ơn bạn nhiều ạ