K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2022

Bạn tự vẽ hình nhé <3

a, Xét △EIB và ΔEDB có:

EB chung

Góc EDB = Góc EIB (=90 độ)

Góc DEB = Góc IEB (pg EB)

△EIB = ΔEDB (ch-gn)

b, Xét △DHB và △IFB có:

góc HDB = góc FIB (=90 độ)

góc HBD = góc FBI (đối đỉnh)

BD = IB (△EIB = ΔEDB)

 △DHB = △IFB (g.c.g)

c, Ta có HB = BF ( △DHB = △IFB)

mà DB < HB (cgv < c.huyền)

⇒ DB < BF 

d, Ta có ED = EI (△EIB = ΔEDB)

             DH = IF (△DHB = △IFB)

⇒ ED + DH = EI + IF

⇒     EH      =     EF

Xét △EHK và △EFK có:

EH = EF (cmt)

EK chung

HK = KF (K là trung điểm HF)

△EHK = △EFK (c.c.c)

⇒ Góc HEK = Góc FEK ( góc t.ứng)

⇒ EK là phân giác góc HEF

 mà EB là phân giác góc HEF

⇒ E, B, K thẳng hàng

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

8 tháng 12 2021

 

a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có

OA=OB(gt)

∠Olà góc chung

⇒ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)

b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có

OI là cạnh chung

OB=OA(gt)

⇒ ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)

⇒IB=IA(hai cạnh tương ứng)

Ta có: IB+ID=BD(do B,I,D thẳng hàng)

IA+IC=AC(do A,I,C thẳng hàng)

MàIB=IA(cmt)

và BD=AC(do ΔAOC=ΔOBD)

⇒ ID=IC

Xét ΔIDC có ID=IC(cmt)

⇒ ΔIDC cân tại I

c) Ta có: ΔOIB=ΔOIA(cmt)

⇒∠BIO=∠AIO(hai góc tương ứng)

Mà tia IO nằm giữa hai tia IA,IB

IO là tia phân giác của∠AIB

 

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! BÀI  6.Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.a) Chứng minh ΔAHB = ΔDBH.b) Chứng minh AB//HD.c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.d) Tính góc ACB , biết góc BDH= 350 .Bài 7 :Cho tam giác ABC cân...
Đọc tiếp

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! 

BÀI  6.

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 7 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

  1. Chứng minh : DB = EC.
  2. Gọi O là giao điểm của BD và  EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
  3. Chứng minh rằng : DE // BC.

Bài 8 :

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

  1. Chứng minh : CD // EB.
  2. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF

Bài 9 :

Cho tam giác ABC vuông tại A có góc B=60 độ . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

  1. Tam giác  ACE đều.
  2. A, E, F thẳng hàng.

 

1
14 tháng 2 2016

moi hok lop 6 thoi

9 tháng 6 2022

a, Xét △EIB và ΔEDB có:

EB chung

Góc EDB = Góc EIB (=90 độ)

Góc DEB = Góc IEB (pg EB)

⇒△EIB = ΔEDB (ch-gn)

b, Xét △DHB và △IFB có:

góc HDB = góc FIB (=90 độ)

góc HBD = góc FBI (đối đỉnh)

BD = IB (△EIB = ΔEDB)

⇒ △DHB = △IFB (g.c.g)

c, Ta có HB = BF ( △DHB = △IFB)

mà DB < HB (cgv < c.huyền)

⇒ DB < BF

d, Ta có ED = EI (△EIB = ΔEDB)

DH = IF (△DHB = △IFB)

⇒ ED + DH = EI + IF

⇒ EH = EF

Xét △EHK và △EFK có: 

EH = EF (cmt)

EK chung

HK = KF (K là trung điểm HF)

⇒△EHK = △EFK (c.c.c)

⇒ Góc HEK = Góc FEK ( góc t.ứng)

⇒ EK là phân giác góc HEF

mà EB là phân giác góc HEF

⇒ E, B, K thẳng hàng

a,xét tam giác  vuông EDB(góc EDB=90 độ)và tam giác vuông EIB(góc EIB=90 độ)có:

   EB chung 

   góc DEB =góc BEI(gt) 

=> tam giác vuôngEDB= tam giác vuông IBF(góc FIB=90 độ)có:

 góc DBH=góc IBF(đđ)  

 DB=BI(cmt)

=> tam giác vuông DBH= tam giác vuông IBF(góc nhọn kề cạnh góc vuông)

=>HB=BF(2 cah t/ứng)

c) có tam giác DBH vuông tại D(gt) 

=>DB<HB(cah đối diện với góc lớn nhất)

mà BH=BF =>DB<BF

d,từ câu a=>ED=EI

có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF

=> tam giác EHF cân tại E(đl tam giác cân)

dựa vào trường hợp đặc biệt của tam giác cân: 

 có EB là tia phân giác=>EB c~  là đng trung tuyến (1)

mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)

=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB

hay E,B,K thẳng hàng

------------------ // Tokyo Ghoul //----------------------------------

16 tháng 2 2020

D E F B I H K

a, xét tam giác BIE và tam giác BDE có : BE chung

góc BDE = góc BIE = 90 

góc BED = góc IEB do EB là phân giác của góc DEF (gt)

=> tam giác BIE = tam giác BDE (Ch-gn)

b, tam giác BIE = tam giác BDE (Câu a)

=> BI = BD (đn)

xét tam giác FBI và tam giác HBD có : góc FBI = góc HBD (đối đỉnh)

góc FIB = góc BDH = 90

=> tam giác FBI = tam giác HBD (2cgv)

=> HB = BF (đn)

c, BD = BI (câu b)

BI < BF do tam giác BFI vuông tại I 

=> BD < DF 

6 tháng 7 2021

a. f(x) = g(x) - h(x)

= 4x2 + 3x + 1 - (3x2 - 2x - 3)

= 4x2 + 3x + 1 - 3x2 + 2x + 3

= (4x2 - 3x2) + (3x + 2x) + (1 + 3)

= x2 + 5x + 4

b. Xét đa thức f(x) = x2 + 5x + 4

f(-4) = (-4)2 + 5 . (-4) + 4 = 0

Vậy x = -4 là nghiệm của f(x)

c. Cho f(x) = 0

\(\Rightarrow\) x2 + 5x + 4 = 0

\(\Rightarrow\) x2 + x + 4x + 4 = 0

\(\Rightarrow\) x (x + 1) + 4 (x + 1) = 0

\(\Rightarrow\) (x + 1) (x + 4) = 0

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

Vậy f(x) có tập nghiệm là \(x\in\left\{-4;-1\right\}\).

6 tháng 7 2021

f(x)=x^2+5x+4 (x+1)(x+4)=0 \(\hept{\begin{cases}x=-1\\x=-4\end{cases}}\) s={-1,-4}

27 tháng 1 2016

a1, Xét tam giác AMB và tam giác AMC có :

AM chung
B=C(tam giác ABC cân )

AB=AC9tam giác ABC cân)

Do đó tam giác AMB=tam giác AMC(c.g.c)

a2, Vì tam giác AMB=tam giác AMC( cmt)

=>Bam=Cam ( 2 góc tương ứng)

=>AM là tia p/g góc A

Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng

27 tháng 1 2016

vẽ hình giúp