Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có
OA=OB(gt)
∠Olà góc chung
⇒ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)
b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có
OI là cạnh chung
OB=OA(gt)
⇒ ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)
⇒IB=IA(hai cạnh tương ứng)
Ta có: IB+ID=BD(do B,I,D thẳng hàng)
IA+IC=AC(do A,I,C thẳng hàng)
MàIB=IA(cmt)
và BD=AC(do ΔAOC=ΔOBD)
⇒ ID=IC
Xét ΔIDC có ID=IC(cmt)
⇒ ΔIDC cân tại I
c) Ta có: ΔOIB=ΔOIA(cmt)
⇒∠BIO=∠AIO(hai góc tương ứng)
Mà tia IO nằm giữa hai tia IA,IB
⇒IO là tia phân giác của∠AIB
a, Xét △EIB và ΔEDB có:
EB chung
Góc EDB = Góc EIB (=90 độ)
Góc DEB = Góc IEB (pg EB)
⇒△EIB = ΔEDB (ch-gn)
b, Xét △DHB và △IFB có:
góc HDB = góc FIB (=90 độ)
góc HBD = góc FBI (đối đỉnh)
BD = IB (△EIB = ΔEDB)
⇒ △DHB = △IFB (g.c.g)
c, Ta có HB = BF ( △DHB = △IFB)
mà DB < HB (cgv < c.huyền)
⇒ DB < BF
d, Ta có ED = EI (△EIB = ΔEDB)
DH = IF (△DHB = △IFB)
⇒ ED + DH = EI + IF
⇒ EH = EF
Xét △EHK và △EFK có:
EH = EF (cmt)
EK chung
HK = KF (K là trung điểm HF)
⇒△EHK = △EFK (c.c.c)
⇒ Góc HEK = Góc FEK ( góc t.ứng)
⇒ EK là phân giác góc HEF
mà EB là phân giác góc HEF
⇒ E, B, K thẳng hàng
a,xét tam giác vuông EDB(góc EDB=90 độ)và tam giác vuông EIB(góc EIB=90 độ)có:
EB chung
góc DEB =góc BEI(gt)
=> tam giác vuôngEDB= tam giác vuông IBF(góc FIB=90 độ)có:
góc DBH=góc IBF(đđ)
DB=BI(cmt)
=> tam giác vuông DBH= tam giác vuông IBF(góc nhọn kề cạnh góc vuông)
=>HB=BF(2 cah t/ứng)
c) có tam giác DBH vuông tại D(gt)
=>DB<HB(cah đối diện với góc lớn nhất)
mà BH=BF =>DB<BF
d,từ câu a=>ED=EI
có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF
=> tam giác EHF cân tại E(đl tam giác cân)
dựa vào trường hợp đặc biệt của tam giác cân:
có EB là tia phân giác=>EB c~ là đng trung tuyến (1)
mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)
=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB
hay E,B,K thẳng hàng
------------------ // Tokyo Ghoul //----------------------------------
D E F B I H K
a, xét tam giác BIE và tam giác BDE có : BE chung
góc BDE = góc BIE = 90
góc BED = góc IEB do EB là phân giác của góc DEF (gt)
=> tam giác BIE = tam giác BDE (Ch-gn)
b, tam giác BIE = tam giác BDE (Câu a)
=> BI = BD (đn)
xét tam giác FBI và tam giác HBD có : góc FBI = góc HBD (đối đỉnh)
góc FIB = góc BDH = 90
=> tam giác FBI = tam giác HBD (2cgv)
=> HB = BF (đn)
c, BD = BI (câu b)
BI < BF do tam giác BFI vuông tại I
=> BD < DF
a. f(x) = g(x) - h(x)
= 4x2 + 3x + 1 - (3x2 - 2x - 3)
= 4x2 + 3x + 1 - 3x2 + 2x + 3
= (4x2 - 3x2) + (3x + 2x) + (1 + 3)
= x2 + 5x + 4
b. Xét đa thức f(x) = x2 + 5x + 4
f(-4) = (-4)2 + 5 . (-4) + 4 = 0
Vậy x = -4 là nghiệm của f(x)
c. Cho f(x) = 0
\(\Rightarrow\) x2 + 5x + 4 = 0
\(\Rightarrow\) x2 + x + 4x + 4 = 0
\(\Rightarrow\) x (x + 1) + 4 (x + 1) = 0
\(\Rightarrow\) (x + 1) (x + 4) = 0
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy f(x) có tập nghiệm là \(x\in\left\{-4;-1\right\}\).
f(x)=x^2+5x+4 (x+1)(x+4)=0 \(\hept{\begin{cases}x=-1\\x=-4\end{cases}}\) s={-1,-4}
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
Bạn tự vẽ hình nhé <3
a, Xét △EIB và ΔEDB có:
EB chung
Góc EDB = Góc EIB (=90 độ)
Góc DEB = Góc IEB (pg EB)
⇒△EIB = ΔEDB (ch-gn)
b, Xét △DHB và △IFB có:
góc HDB = góc FIB (=90 độ)
góc HBD = góc FBI (đối đỉnh)
BD = IB (△EIB = ΔEDB)
⇒ △DHB = △IFB (g.c.g)
c, Ta có HB = BF ( △DHB = △IFB)
mà DB < HB (cgv < c.huyền)
⇒ DB < BF
d, Ta có ED = EI (△EIB = ΔEDB)
DH = IF (△DHB = △IFB)
⇒ ED + DH = EI + IF
⇒ EH = EF
Xét △EHK và △EFK có:
EH = EF (cmt)
EK chung
HK = KF (K là trung điểm HF)
⇒△EHK = △EFK (c.c.c)
⇒ Góc HEK = Góc FEK ( góc t.ứng)
⇒ EK là phân giác góc HEF
mà EB là phân giác góc HEF
⇒ E, B, K thẳng hàng