">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: BC+CN=BN(C nằm giữa B và N)

CB+BM=CM(B nằm giữa C và M)

mà BM=CN(gt)

nên BN=CM

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABN}=\widehat{ACM}\)(hai góc ở đáy của ΔABC cân tại A)

BN=CM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

c) Ta có: ΔABM=ΔACN(cmt)

nên \(\widehat{AMB}=\widehat{ANC}\)(hai góc tương ứng)

hay \(\widehat{HMB}=\widehat{KNC}\)

Xét ΔHBM vuông tại H và ΔKCN vuông tại K có 

BM=CN(gt)

\(\widehat{HMB}=\widehat{KNC}\)(cmt)

Do đó: ΔHBM=ΔKCN(cạnh huyền-góc nhọn)

Suy ra: HB=KC(hai cạnh tương ứng)

d) Ta có: ΔABM=ΔACN(cmt)

nên AM=AN(hai cạnh tương ứng)

Ta có: AH+HM=AM(H nằm giữa A và M)

AK+KB=AN(K nằm giữa A và N)

mà AM=AN(cmt)

và HM=KB(cmt)

nên AH=AK

Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAHK cân tại A(cmt)

nên \(\widehat{AHK}=\dfrac{180^0-\widehat{HAK}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)

hay \(\widehat{AHK}=\dfrac{180^0-\widehat{MAN}}{2}\)(1)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AHK}=\widehat{AMN}\)

mà \(\widehat{AHK}\) và \(\widehat{AMN}\) là hai góc ở vị trí đồng vị

nên HK//MN(Dấu hiệu nhận biết hai đường thẳng song song)

hay HK//BC(Đpcm)

e) Ta có: ΔHBM=ΔKCN(cmt)

nên \(\widehat{HBM}=\widehat{KCN}\)(hai góc tương ứng)

mà \(\widehat{HBM}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCN}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

f) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(ΔOBC cân tại O)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy AO là đường trung trực của BC

hay AO\(\perp\)BC(Đpcm)

26 tháng 10 2021

Mình không biết nha

26 tháng 10 2021

Bài 3 :

A B S M C P N x y 1 2 z 1 2

a) Kéo dài tia NM và NM cắt BC tại S

Khi đó ta có :

\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)

b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)

\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)

Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)

Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong 

=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau

13 tháng 10 2021
Mờ quá bn mik ko nhìn rõ
13 tháng 10 2021

để mik chụp lại

7 tháng 8 2021
Rất tiếc mình hông biết lm
7 tháng 8 2021
Ko bn nào giúp mk hở . Bùn qué 😞
5 tháng 8 2021
Không có ai bùn qué 😞
5 tháng 8 2021

sorry chị em mới lớp 6 nên ko biết làm mong chị thông cảm ạ

14 tháng 11 2021

bạn ghi ra chớ chụp rối lém

14 tháng 11 2021

mik chụp từng câu 1 đc ko bạn

1.Điều kiện : \(x\ge0\)

\(\Rightarrow\hept{\begin{cases}x+3,4>0\\x+2,4>0\\x+7,2>0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)

\(\Rightarrow\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=x+3,4+x+2,4+x+7,2\)

                                                                                \(=3x+13=4x\)

\(\Rightarrow4x-3x=13\)

\(\Rightarrow x=13\)

Vậy \(x=13\)

2.\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12\)

\(=6\left(3^n.5+2^n.2\right)⋮6\)

4.a)

  • \(3^{34}=3^{30+4}=3^{30}.3^4=3^{3.10}.3^4=\left(3^3\right)^{10}.3^4=27^{10}.3^4\)

\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)

Vì \(27^{10}>25^{10}\Rightarrow27^{10}.3^4>25^{10}\)

hay \(3^{34}>5^{20}\)

  • \(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)

b)\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

24 tháng 7 2021

Ta có \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{5}=\frac{z}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{28}\end{cases}}\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=8\)

=> x = 15 x 8 = 120 

; y = 20 x 8 = 160 ; 

z = 28 x 8 = 224

Vậy x = 120 ; y = 160 ; z = 224