K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

a) \(A=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)

\(=2\sqrt{3}:\sqrt{3}-5\sqrt{27}:\sqrt{3}+4\sqrt{12}:\sqrt{3}\)

\(=2\sqrt{3:3}-5\sqrt{27:3}+4\sqrt{12:3}\)

\(=2\sqrt{1}-5\sqrt{9}+4\sqrt{4}=2.1-5.3+4.2=2-15+8=-5\)

\(B=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=\frac{\left(2+\sqrt{3}\right).\left(\sqrt{2-\sqrt{3}}\right)^2}{\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}}\)

\(=\frac{\left(2+\sqrt{3}\right).\left(2-\sqrt{3}\right)}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=\frac{4-3}{\sqrt{4-3}}=\frac{1}{\sqrt{1}}=1\)

b) \(ĐKXĐ:x\ge\frac{7}{2}\)

Thay \(A=-5\)\(B=1\)vào biểu thức ta được:

\(1-3\sqrt{2x-7}=-5\)\(\Leftrightarrow3\sqrt{2x-7}=6\)

\(\Leftrightarrow\sqrt{2x-7}=2\)\(\Leftrightarrow2x-7=4\)

\(\Leftrightarrow2x=11\)\(\Leftrightarrow x=\frac{11}{2}\)( thỏa mãn ĐKXĐ )

Vậy \(x=\frac{11}{2}\)

1 tháng 9 2021

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x=t\)

\(\left(t+10\right)\left(t+12\right)-8=t^2+22t+120-8\)

\(=t^2+22t+112=\left(t+8\right)\left(t+14\right)\)

Theo cách đặt \(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)

1 tháng 9 2021

CHAO BAN

22 tháng 3 2023

\(\dfrac{5}{x+2}-\dfrac{x-1}{x-2}=\dfrac{12}{x^2-4}+1\left(x\ne-2;x\ne2\right)\)

\(< =>\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

suy ra

`5x-10-(x^2 +2x-x-2)=12+x^2 -4`

`<=>5x-10-x^2 -2x+x+2-12-x^2 +4=0`

`<=>-x^2 -x^2 +5x-2x+x-10+2+4=0`

`<=>-x^2 +4x-4=0`

`<=>x^2 -4x+4=0`

`<=>(x-2)^2 =0`

`<=>x-2=0`

`<=>x=2(ktmđk)`

vậy phương trình vô nghiệm

NV
22 tháng 3 2023

ĐKXĐ: \(x\ne\pm2\)

\(\dfrac{5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow5\left(x-2\right)-\left(x-1\right)\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow5x-10-\left(x^2+x-2\right)=12+x^2-4\)

\(\Leftrightarrow-x^2+4x-8=x^2+8\)

\(\Leftrightarrow2x^2-4x+16=0\)

\(\Leftrightarrow2\left(x-1\right)^2+14=0\)

Do \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\\14>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow2\left(x-1\right)^2+14>0\)

Vậy phương trình đã cho vô nghiệm

28 tháng 8 2021

a) -4x2 + 8x - 4

= - (4x2 - 8x + 4)

= - (2x - 2)2

b) -x52 + 10 x - 5

= - 5(x2 - 2x + 1)

= - 5(x - 1)2

28 tháng 8 2021

-4x^2+8x-4

=-4.(x^2-2x+1)

=-4.(x-1)^2

21 tháng 10 2021

Bạn tham khảo nhé:

Trên tia đối của KG lấy điểm F sao cho KG=KF.

Ta có: ΔABC đều => ^A=600. Xét ΔADE có: ^A=600, AD=AE

=> ΔADE đều. Mà G là trọng tâm của ΔADE

=> G cũng là giao của 3 đường trung trực trong ΔABC 

=> DG=AG (T/c đường trung trực) (1)

Xét ΔGDK và ΔFCK:

KD=KC

^DKG=^CKF              => ΔGDK=ΔFCK (c.g.c)

KG=KF

=> DG=CF (2 cạnh tương ứng). (2)

Từ (1) và (2) => AG=CF.

Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK

Lại có: ED//BC (Vì ΔADE đều) => ^EDK=^BCK (So le trong)

=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)

Xét ΔΔADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE

=> ^GDE=^ADE/2=300

Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)

Từ (3) và (4) => ^GAB=^FCB

Xét ΔAGB và ΔCFB có:

AB=CB

^GAB=^CFB           => ΔAGB=ΔCFB (c.g.c)

AG=CF

=> GB=FB (2 cạnh tương ứng) (5).

=> ^ABG=^CBF (2 góc tương ứng). Lại có:

^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:

^CBF+^GBC=600 => ^GBF=600 (6)

Từ (5) và (6) => ΔGBF là tam giác đều. => ^BGF=600 hay ^BGK=600

K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300

Xét ΔBGK: ^BGK=600, ^GBK=300 => ^BKG=900.

ĐS: ^GBK=300, ^BGK=600, ^BKG=900.

X³-4x+x-2=x×(x²-4)+(x-2) =x×(x-2)×(x+2)+(x-2) =(x-2)×(x×(x+2)+1)
11 tháng 9 2021

Ánh sáng yếu lắm , với cả chữ hơi khó đọc , hay viết tắt , nếu chứ khó đọc thì hãy viết mực xanh nhìn sáng với cả dễ đọc hơn nhiều đó bn .viết lại đi nếu biết mik trả lời cho nha okay !

30 tháng 11 2021

dễ nhưng ko bit làm

14 tháng 8 2021

Mik chỉ cần đáp án thôi nhé, ko cần vẽ trục số

14 tháng 8 2021

\(\dfrac{2x-3}{5}-x+2\ge\dfrac{x}{3}\)

\(\Leftrightarrow3\left(2x-3\right)-15\left(x+2\right)\ge5x\)

\(\Leftrightarrow6x-9-15x+30\ge5x\)

\(\Leftrightarrow6x-15x-5x\ge9+30\)

\(\Leftrightarrow-14x\ge-21\)

\(\Leftrightarrow x\le\dfrac{21}{14}\le\dfrac{3}{2}\)

-------------|--------]////////////////--->

                0        3/2

lâu rồi cũng không nhớ cách làm :v

24 tháng 2 2022

\(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x-y\right)}{\left(x-y\right)^2x\left(x+y\right)}=\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{x\left(x-y\right)^2\left(x+y\right)}=\dfrac{x^2+y^2}{x}\)

21 tháng 9 2023

\(9-\left(x-y\right)^2\)

\(=3^2-\left(x-y\right)^2\)

\(=\left(3-x+y\right)\left(3+x-y\right)\)

____

\(\left(x-y\right)^2-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

____

\(\left(x+2\right)^2-y^2\)

\(=\left[\left(x+2\right)-y\right]\left[\left(x+2\right)+y\right]\)

\(=\left(x-y+2\right)\left(x+y+2\right)\)

____

\(\left(3x+1\right)^2-\left(x+1\right)^2\)

\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)

\(=2x\left(4x+2\right)\)

\(=4x\left(2x+1\right)\)

____

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)

\(=2x\cdot2y\)

\(=4xy\)

____
\(\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)

\(=\left[2x\left(y-1\right)-\left(y-1\right)\right]\left[2x\left(y+1\right)+\left(y+1\right)\right]\)

\(=\left(y-1\right)\left(2x-1\right)\left(2x+1\right)\left(y+1\right)\)