Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện nhân tung ra ta có .
a.\(x^3+3x^2+3x+1-\left(x^3-3x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow6x+1-2+27=5\Leftrightarrow6x=-21\Leftrightarrow x=-\frac{7}{2}\)
b.\(x^3+3x^2-4+x^3-3x+2-\left(x^3+3x^2+3x+1\right)=4\)
\(\Rightarrow x^3=7\Leftrightarrow x=\sqrt[3]{7}\)
c.\(x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\Leftrightarrow18x=0\Leftrightarrow x=0\)
a) \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x+1\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)\)
\(=x^3+3x^2+3x+1-\left(x^3-x^2-x+1\right)-\left(3x^2-27\right)\)
\(=x^3+3x^2+3x+1-x^3+x^2+x+1-3x^2+27\)
\(=6x+26\)
toàn hđt mà bạn
a, \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6=\left(\frac{x}{2}+y^2\right)^3\)
b, \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)
c, \(8u^3-48u^2v+96uv^2-64v^3=\left(2y-4v\right)^3\)
d, \(\left(z-t\right)^3+15\left(z-t\right)^2+75\left(z-t\right)+125\)
\(=\left(z-t+5\right)^3\); e, \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
sửa hộ mình ý c =)) do gần nhau quá nên đánh lộn
\(\left(2u-4v\right)^3\)
Bài 4:
a)
\(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\\ \Leftrightarrow\frac{12x^2+12x+3}{15}-\frac{5x^2-10x+5}{15}-\frac{7x^2-14x-5}{15}=0\\ \Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\\ \Leftrightarrow36x+3=0\\ \Rightarrow x=-\frac{3}{36}==-\frac{1}{12}\)
b)
\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\cdot\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\\ \Leftrightarrow\frac{8x^2-32x+32}{24}-\frac{12x^2-27}{24}+\frac{4x^2-32x+64}{24}=0\\ \Leftrightarrow8x^2-32x+32-12x^2+27+4x^2-32x+64=0\\ \Leftrightarrow96-64x=0\\ \Rightarrow x=\frac{96}{64}=\frac{3}{2}\)
Bài 3 câu g:
\(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{20}\)
\(\Leftrightarrow\left(\frac{x-10}{1994}-1\right)+\left(\frac{x-8}{1996}-1\right)+\left(\frac{x-6}{1998}-1\right)+\left(\frac{x-4}{2000}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2000}{4}-1\right)+\left(\frac{x-1998}{6}-1\right)+\left(\frac{x-1996}{8}-1\right)+\left(\frac{x-1994}{10}-1\right)\)
\(\Leftrightarrow\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)
\(\Leftrightarrow\left(x-2004\right)\cdot\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}\right)=\left(x-2004\right)\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{10}\right)\)
\(\Leftrightarrow\left(x-2004\right)\cdot\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)\)
\(\Rightarrow x-2004=0\\ \Rightarrow x=2004\)
Bài 3:
1)
\(2x^2+5x+3=0\\ \Leftrightarrow\left(3+2x\right)\cdot\left(1+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}3+2x=0\\1+x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=-1\end{matrix}\right.\)
2)
\(x^2+4x+3=0\\ \Leftrightarrow\left(3+x\right)\cdot\left(1+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}3+x=0\\1+x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
3)
\(x^2-x-12=0\\ \Leftrightarrow\left(-3-x\right)\cdot\left(4-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3-x=0\\4-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
4)
\(x^2-3x+2=0\\ \Leftrightarrow\left(1-x\right)\cdot\left(2-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}1-x=0\\2-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
5)
\(-x^2+5x-6=0\\ \Leftrightarrow\left(-3+x\right)\cdot\left(2-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3+x=0\\2-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
6)
\(4x^2-12x+5=0\\ \Leftrightarrow\left(1-2x\right)\cdot\left(5-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}1-2x=0\\5-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)
7)
\(4x^2+4x-3=0\\ \Leftrightarrow\left(-3-2x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3-2x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
8)
\(x^2-3x+2=0\\ \Leftrightarrow\left(1-x\right)\cdot\left(2-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}1-x=0\\2-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
9)
\(3x^2-22x-16=0\\ \Leftrightarrow\left(-2-3x\right)\cdot\left(8-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-2-3x=0\\8-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=8\end{matrix}\right.\)
10)
\(2x^2+7x-15=0\\ \Leftrightarrow\left(-5-x\right)\cdot\left(3-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-5-x=0\\3-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\x=\frac{3}{2}\end{matrix}\right.\)
11)
\(\left(x-5\right)^2-16=0\\ \Leftrightarrow\left(x-9\right)\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
12)
\(\left(x-4\right)^2-25=0\\ \Leftrightarrow\left(x-9\right)\cdot\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-9=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
13)
\(25-\left(3-x\right)^2=0\\ \Leftrightarrow\left(2+x\right)\cdot\left(8-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2+x=0\\8-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\x=8\end{matrix}\right.\)
14)
\(\left(x-3\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow-4\cdot\left(2x-2\right)=0\\ \Rightarrow2x-2=0\\ \Rightarrow x=1\)
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
Bài 1:
6, x - \(\frac{x+1}{3}\) = \(\frac{2x+1}{5}\)
\(\Leftrightarrow\) \(\frac{15x}{15}\) - \(\frac{5\left(x+1\right)}{15}\) = \(\frac{3\left(2x+1\right)}{15}\)
\(\Leftrightarrow\) 15x - 5(x + 1) = 3(2x + 1)
\(\Leftrightarrow\) 15x - 5x - 5 = 6x + 3
\(\Leftrightarrow\) 10x - 5 = 6x + 3
\(\Leftrightarrow\) 10x - 6x = 3 + 5
\(\Leftrightarrow\) 4x = 8
\(\Leftrightarrow\) x = 2
Vậy S = {2}
làm lỗi nên hơi lâu
Chúc bạn học tốt!
1) \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)
\(\Leftrightarrow\frac{9x+6}{6}-\frac{3x+1}{6}-\frac{10}{6}-\frac{12x}{6}=0\)
\(\Leftrightarrow\frac{9x+6-3x-1-10-12x}{6}=0\)
\(\Leftrightarrow\frac{-6x-5}{6}=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\Leftrightarrow x=-\frac{5}{6}\)
Vậy \(S=\left\{-\frac{5}{6}\right\}\)
2) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{3x-9}{15}-\frac{90}{15}+\frac{5-10x}{15}=0\)
\(\Leftrightarrow3x-9-90+5-10x=0\)
\(\Leftrightarrow-7x-94=0\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
Vậy \(S=-\frac{94}{7}\)
a: Xét ΔABC có
M là trung điểm của bC
I là trung điểm của AC
Do đó: MI là đường trung bình của ΔABC
Suy ra: MI=AB/2=3(cm)