\(\dfrac{3n-4}{2-n}\) c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: n<>2

Để A là số nguyên thì \(3n-4⋮2-n\)

=>\(3n-4⋮n-2\)

=>\(3n-6+2⋮n-2\)

=>\(2⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{3;1;4;0\right\}\)

18 tháng 3 2021

\(A=\frac{3n+2}{n}=3+\frac{2}{n}\)

A nguyên \(\Leftrightarrow3+\frac{2}{n}\)nguyên \(\Leftrightarrow\frac{2}{n}\)nguyên
\(\Leftrightarrow n\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\in Z\)

Vậy \(n\in\left\{\pm1;\pm2\right\}\)thì A nguyên

18 tháng 3 2021

Trả lời:

ta cần tìm n để (3n+2) mod n =0

Ta thấy: 3n mod n =0

=> để A nguyên thì

2 mod n =0

=> n={-2,-1,1,2}

11 tháng 5 2016

A= 3n+2/n-1 = 3n-3+5/n-1 = 3n-3/n-1 + 5/n-1 = 3 - 5/n-1

Vậy A là số nguyên khi 5 chia hết cho n-1 (nguyên trừ nguyên mới ra nguyên nhen)

=>n-1 thuộc Ư{5}={1;-1;5;-5}

=>n thuộc {2;0;6;-4}

Không chắc nhen

12 tháng 5 2016

vì 3n +2/n-1 có giá trị là 1 số nguyên nên 3n+2 chia hết cho n-1.                                                 Ta có: 3n+2 chia hết cho n-1                                                                                                                       3n-3+5 chia hết cho n-1                                                                                                                   (3n-3)+5 chia hết cho n-1                                                                                                                 3(n-1)+5 chia hết cho n-1                                                                                                         suy ra, 5 chia hết cho n-1(vì 3(n-1) chia hết cho n-1)                                                                 suy ra, n-1 thuộc Ư(5)=(-1,-5,5,1)                                                                                              suy ra, n thuộc(0,-4,6,2)                                                                                                           Vay n thuoc (0,-4,6,2)

 

18 tháng 2 2017

\(\frac[6][5]\,

1 tháng 5 2019

a, Để A là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)

b, \(\frac{3n-5}{n+4}\in Z\Rightarrow\frac{3n+12-17}{n+4}\in Z\Rightarrow\frac{3\left(n+4\right)-17}{n+4}\in Z\)

\(\Rightarrow\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}\in Z\Rightarrow3-\frac{17}{n+4}\in Z\)

Mà \(3\in Z\Rightarrow\frac{17}{n+4}\in Z\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

TH1: n + 4 = -1 => n = -1 - 4 = -5

TH2: n + 4 = 1 => n = 1 - 4 = -3

TH3: n + 4 = -17 => n = -17 - 4 = -21

TH4: n + 4 = 17 => n = 17 - 4 = 13

Mặt khác \(n\inℕ^∗\Rightarrow n=13\) mới có thể thỏa mãn.

28 tháng 7 2018

a) Để A là p/số

\(\Rightarrow n+3\ne0\)

\(\Rightarrow n\ne-3\)

b) Để\(A\inℤ\)

\(\Rightarrow n-3⋮n+3\)

\(\Leftrightarrow n-3=n+3-6\)

\(\Rightarrow6⋮n+3\)

\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(\Rightarrow n\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)

Vì :\(n\inℕ\)

\(\Rightarrow n\in\left\{0;3\right\}\)

c)\(\frac{n-3}{n+3}=\frac{n+3-6}{n+3}=1-\frac{6}{n+3}\)

Để A tối giản

\(\LeftrightarrowƯCLN\left(n-3;n+3\right)=1\)

\(\LeftrightarrowƯCLN\left(-6;n-3\right)=1\)

\(\Rightarrow n-3⋮̸\)\(-6\)

\(\Rightarrow n-3\ne6k\)

\(\Rightarrow n\ne6k+3\)

16 tháng 7 2017

câu 1 cho A rồi làm gì nữa vậy 
câu 2 mình nói cách làm rồi sau này bạn tự áp dụng nhé !
với những bài như thế này thì bạn rút gọn phân thức (nhớ đk là mẫu khác 0 ) , chẳng hạn : 
\(A=\frac{3n+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)          

vì 3 là số nguyên , => để A nguyên thì 21/(n-4) phải nguyên mà n nguyên (*) nên n-4 là ước của 21 từ đó tìm n 

(*) nếu đề bài ko cho n nguyên thì ko làm cách này đc đâu nhé ! nhưng lớp 6 chắc chưa học đến cái đó đâu . 

16 tháng 7 2017

Tính A đó bạn

NM
17 tháng 1 2022

ta có : 

\(M=\frac{3\times\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\) nguyên khi n+4 là ước của 17 hay

\(n+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow n\in\left\{-21;-5;-3;13\right\}\)

NM
10 tháng 5 2021

Ta có 

\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay

\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)

10 tháng 5 2021

Để A có  giá trị nguyên

<=> 3n + 4 ⋮  n - 1

=> ( 3n - 3 ) + 7 ⋮  n - 1

=> 3 . ( n - 1 ) + 7 ⋮  n - 1

vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1 

=> n - 1 ∈  Ư(7) = { - 7 ; -1 ; 1 ; 7 }

Ta có bảng sau :

n-11-1-77
n20-68

mọi giá trị n đều thuộc z (chọn)

 Vậy x  ∈ { - 6 ; 0 ; 2 ; 8 }