Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là thời gian đội 1 làm
y là thời gian đội 2 làm ( x, y >0 ) đơn vị :giờ
trong 1 giờ đội 1 làm được\(\frac{1}{x}\)(công việc)
trong 1 giờ đội 2 làm được\(\frac{1}{y}\)(công việc)
Theo đề ta có: \(x+y=25\)
2 đội cùng làm thì công việc hoàn thành 6h => Làm được \(\frac{1}{6}\)(công việc)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\)
=> Ta có PT :\(\hept{\begin{cases}x+y=25\\\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\end{cases}}\)
Giải hệ PT để ra tiếp KQ
Ánh sáng yếu lắm , với cả chữ hơi khó đọc , hay viết tắt , nếu chứ khó đọc thì hãy viết mực xanh nhìn sáng với cả dễ đọc hơn nhiều đó bn .viết lại đi nếu biết mik trả lời cho nha okay !
Bài 3:
b: Xét ΔABC có
I là trung điểm của BC
IK//AC
Do đó: K là trung điểm của AB
Xét ΔABC có
I là trung điểm của BC
IH//AB
Do đó: H là trung điểm của AC
Xét ΔABC có
K là trung điểm của AB
H là trung điểm của AC
Do đó: HK là đường trung bình của ΔABC
Suy ra: HK//BC
- Xét \(\Delta OAD\)có : EA = EO (gt) ; FO = FD (gt)
= > EF là đường trung bình của \(\Delta OAD\) => \(EF=\frac{1}{2}AD=\frac{1}{2}BC\) ( Vì AD = BC ) (1)
Xét \(\Delta ABO\) đều , có E là trung điểm AO => BE là đường trung tuyến của tam giác ABO => BE là đường cao của tam giác ABO
\(\Rightarrow BE⊥AC\left\{E\right\}\)
- Xét tam giác EBC vuông tại E , có : BK = KC => EK là trung tuyến ứng với cạnh BC trong tam giac vuông EBC
=> \(EK=\frac{1}{2}BC\) (2)
- Xét tam giác OCD , có
+ OD = OC ( Vì BD = AC và OB = OA => BD-OB = AC - OA => OD = OC )
+ \(\widehat{COD}=60^o\)( Vì tam giác OAB đều )
=> tam giác OCD đều
-Xét tam giác đều OCD , có FO = FD => CF là trung tuyến của tam giác OCD => CF là đường cao của tam giác OCD
HAy \(CF⊥BD\left\{F\right\}\)
- Xét tam giác FBC vuông tại F , có BK = KC (gt)
=> FK là đường trung tuyến của tam giác vuông FBC ứng với cạnh BC
=> \(FK=\frac{1}{2}BC\) (3)
TỪ (1) , (2) và (3) , ta có : \(EF=EK=FK\left(=\frac{1}{2}BC\right)\)
=>>>> tam giác EFK đều
B2: a) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{1}{2}-x\right)\)
\(=-\left(x+\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)\)
\(=-x^2+\dfrac{1}{4}\)
b) \(\left(3x-2y\right)\left(3x+2y\right)\)
\(=\left(3x\right)^2-\left(2y\right)^2\)
\(=9x^2-4y^2\)
c) \(\left(x-3\right)\left(3+x\right)\)
\(=x^2-3^2\)
\(=x^2-9\)
d) \(x^2+6x+9\)
\(=x^2+2\cdot3\cdot x+3^2\)
\(=\left(x+3\right)^2\)
e) \(9x^2-6x+1\)
\(=\left(3x\right)^2-2\cdot3x\cdot1+1^2\)
\(=\left(3x-1\right)^2\)
f) \(x^2y^2+xy+\dfrac{1}{4}\)
\(=\left(xy\right)^2+2\cdot\dfrac{1}{2}\cdot xy+\left(\dfrac{1}{2}\right)^2\)
\(=\left(xy+\dfrac{1}{2}\right)^2\)
g) \(\left(x-y\right)^2+6\left(x-y\right)+9\)
\(=\left(x-y\right)^2+2\cdot3\cdot\left(x-y\right)+3^2\)
\(=\left(x-y+3\right)^2\)
h) \(x^2+8x+16\)
\(=x^2+2\cdot4\cdot x+4^2\)
\(=\left(x+4\right)^2\)
i) \(9x^2-24x+16\)
\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)
\(=\left(3x-4\right)^2\)
k) \(x^2-3x+\dfrac{9}{4}\)
\(=x^2-2\cdot\dfrac{3}{2}\cdot x+\left(\dfrac{3}{2}\right)^2\)
\(=\left(x-\dfrac{3}{2}\right)^2\)
l) \(4x^2y^4-4xy^3+y^2\)
\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)
\(=\left(2xy^2-y\right)^2\)
m) \(9x^2-6x+1\)
\(=\left(3x\right)^2-2\cdot3x\cdot1+1\)
\(=\left(3x-1\right)^2\)
Thank you very much Phong