Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2n-1\right)^3-2n+1\)
\(A=8n^3-6n+6n-1-2n+1\)
\(A=8n^3-2n=2n\left(4n^2-1\right)\)
\(A=2n\left(2n+1\right)\left(2n-1\right)\)
\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)
Bài giải:
a) (x2 – 2x+ 1)(x – 1)
= x2 . x + x2.(-1) + (-2x). x + (-2x). (-1) + 1 . x + 1 . (-1)
= x3 - x2 - 2x2 + 2x + x – 1
= x3 - 3x2 + 3x – 1
b) (x3 – 2x2 + x -1)(5 – x)
= x3 . 5 + x3 . (-x) + (-2 x2) . 5 + (-2x2)(-x) + x . 5 + x(-x) + (-1) . 5 + (-1) . (-x)
= 5 x3 – x4 – 10x2 + 2x3 +5x – x2 – 5 + x
= - x4 + 7x3 – 11x2+ 6x - 5.
Suy ra kết quả của phép nhan:
(x3 – 2x2 + x -1)(x - 5) = (x3 – 2x2 + x -1)(-(5 - x))
= - (x3 – 2x2 + x -1)(5 – x)
= - (- x4 + 7x3 – 11x2+ 6x -5)
= x4 - 7x3 + 11x2- 6x + 5
a: \(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\ge2\)
b: \(6x-x^2+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left(x-3\right)^2+10\le10\)
a) ta có: \(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^o\Rightarrow\widehat{AMB}+\widehat{DMC}=90^0\)
đồng thời: \(\widehat{AMB}+\widehat{ABM}=90^0\)
\(\Rightarrow\widehat{DMC}=\widehat{ABM}\)
xét tam giác ABM và tam giác DMC có:
\(\widehat{MAB}=\widehat{MDC}=90^0\\ \widehat{ABM}=\widehat{DMC}\)
do đó tam giác ABM đồng dạng tam giác DMC(g-g)
\(\Rightarrow\dfrac{AB}{AM}=\dfrac{MD}{DC}\Rightarrow AB.DC=AM.MD\)
mà AM=MD, nên : \(AB.DC=AM.AM\)
b) vì tam giác ABM đồng dạng tam giác DMC nên:
\(\dfrac{BM}{MC}=\dfrac{AB}{MD}\:hay\:\dfrac{BM}{MC}=\dfrac{AB}{AM}\)
đồng thời: \(\widehat{MAB}=\widehat{MDC}=90^0\)
do đó tam giác ABM đồng dạng tam giác MBC(c-g-c)
52 + 122 =132 => tg vuong
Sabc = 12.5/2 = 30cm2
( toán violympic cho rất thông minh, mới nhìn là mk phát hiện ra r , thui mk đi học đây)
Tam giác ABC có 3 cạnh của tam giác ứng với định lí Py-ta-go=> ABC là tam giác vuông
\(S_{ABC}=\frac{5.12}{2}=30cm^2\)
Có a+b+c=0
<=> a+b=-c
<=>(a+b)^3=-c^3
<=>a^3+3a^2b+3ab^2+b^3=-c^3
<=>a^3+b^3+c^3=-3ab(a+b)
<=>a^3+b^3+c^3=-3ab(-c)=3abc
\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
A B C D E H K
a) Trong tam giác cân, đường cao xuất phát từ đỉnh đồng thời là đường trung trực.
Mà BD = AB nên \(\Delta\)BDA cân tại B. Do đó BH cũng là đường trung trực
Suy ra AH = HD.
b) Chứng minh tương tự câu a ta có AK = EK do đó K là trung điểm AE.
Từ câu a có ngay H là trung điểm AD.
Từ đó HK là đường trung bình tam giác ADE nên HK // DE
Hay HK // BC (vì D, E lần lượt thuộc tia đối của BC và CB)
Ta có đpcm.
P/s: ko chắc
Bài 2:
Diện tích khu vườn là:
\(\left(14+x\right)\left(18-x\right)\)
\(=252-14x+18x-x^2\)
\(=-x^2+4x+252\)
\(=-\left(x^2-4x+4-256\right)\)
\(=-\left(x-2\right)^2+256\le256\forall x\)
Dấu '=' xảy ra khi x=2
Chu vi hình chữ nhật là:
\(C=2\left[14+x+18-x\right]=2\cdot32=64\left(cm\right)\)