Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>AD=ED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
2BF=BF+BC>FC
a: Xét ΔDOE vuông tại O và ΔKOE vuông tại O có
EO chung
\(\widehat{DEO}=\widehat{KEO}\)
Do đó: ΔDOE=ΔKOE
b: Xét ΔEDI vàΔEKI có
ED=EK
\(\widehat{DEI}=\widehat{KEI}\)
EI chung
Do đó: ΔEDI=ΔEKI
Suy ra: \(\widehat{EDI}=\widehat{EKI}=90^0\)
hay IK\(\perp\)FE
c: Xét ΔDIQ vuông tại D và ΔKIF vuông tại K có
ID=IK
\(\widehat{DIQ}=\widehat{KIF}\)
Do đó: ΔDIQ=ΔKIF
Suy ra: IQ=IF
Bài 2.
a. góc xAB + góc ABy = 45+135 = 180 (độ)
--> góc xAB và ABy là hai góc trong cùng phía bù nhau
--> Ax // By (đpcm)
b. góc CBy =360 - 75 -135 = 150 (độ)
--> góc CBy + góc CBz = 150 +30 =180 (độ)
--> góc CBy và CBz là hai góc trong cùng phía bù nhau
--> By//Cz (đpcm)
a: Xét ΔMAB và ΔMDC co
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét tứ giác AGDH có
AG//DH
AG=DH
=>AGDH là hình bình hành
=>G,M,H thẳng hàng
Bài 2:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{9}{9}=1\)
Do đó: x=2; y=3; z=4
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3\cdot3+4\cdot9}=\dfrac{62}{31}=2\)
Do đó: x=8; y=6; z=19
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\)
Do đó: x=10; y=15; z=20
Bài 1:
a: Ta có: \(\dfrac{x}{y}=\dfrac{9}{11}\)
nên \(\dfrac{x}{9}=\dfrac{y}{11}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{11}=\dfrac{x+y}{9+11}=\dfrac{60}{20}=3\)
Do đó: x=27; y=33
b: ta có: \(\dfrac{x}{y}=\dfrac{1.2}{2.5}\)
nên \(\dfrac{x}{12}=\dfrac{y}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{12}=\dfrac{y}{25}=\dfrac{y-x}{25-12}=\dfrac{26}{13}=2\)
Do đó: x=24; y=50
c: Ta có: \(7x=4y\)
nên \(\dfrac{x}{4}=\dfrac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{y-x}{7-4}=\dfrac{33}{3}=11\)
Do đó: x=44; y=77
d:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
Do đó: x=-21; y=12
3:
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>DB=ED
b; Xét ΔDBK và ΔDEC có
góc DBK=góc DEC
DB=DE
góc BDK=góc EDC
=>ΔDBK=ΔDEC
c: AB+BK=AK
AE+EC=AC
mà AB=AE; BK=EC
nên AK=AC
=>ΔAKC cân tại A
d: ΔAKC cân tại A
mà AD là phân giác
nên AD vuông góc KC
\(A=\frac{4!}{8.9.10}.\left(\frac{6.7.8}{3!}-\frac{6.7.8.9}{2!}\right)=\frac{1}{30}.\left(56-1512\right)=\frac{1}{30}.\left(-1456\right)\)
\(=-\frac{728}{15}=-48,5\left(3\right)\)
Số nguyên lớn nhất không vượt quá -48,5(3) là -49
Do đó \(\left[A\right]=-49\)
BÀI NÀY LỚP 8 MỚI HỌC MIK KO BIK