Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải:
2xy+x+2y=13
x(2y+1)+2y=13
x(2y+1)+(2y+1)=14
(2y+1)(x+1)=14
suy ra: hai tổng này thuộc ước của 14
Ư(14)={1;2;7;14}
mà 2y+1 chắc chắn lẻ(y thuộc N)
nên 2y+1 thuộc {1;7}
x+1 thuộc {2;14}
2y+1=1 thì y=0
2y+1=7 thì y=3
x+1=2 thì x=1
x+1=14 thì x=13
vậy y thuộc {0;3}
x thuộc {1;13}
\(\left(2+2x\right)\left(y+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2+2x=0\\y+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y=-5\end{cases}}\)
\(2xy+x+2y=13\\ \Rightarrow2xy+x+2y+1-1=13\\ \Rightarrow\left(2xy+2y\right)+\left(x+1\right)=13+1\\ \Rightarrow2y\left(x+1\right)+\left(x+1\right)=14\\ \Rightarrow\left(x+1\right)\left(2y+1\right)=14\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(14\right)\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(x+1\) | \(-14\) | \(-7\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(7\) | \(14\) |
\(2y+1\) | \(-1\) | \(-2\) | \(-7\) | \(-14\) | \(14\) | \(7\) | \(2\) | \(1\) |
\(x\) | \(-15\) | \(-8\) | \(-3\) | \(-2\) | \(0\) | \(1\) | \(6\) | \(13\) |
\(y\) | \(-1\) | \(-\dfrac{3}{2}\) | \(-4\) | \(-\dfrac{15}{2}\) | \(\dfrac{13}{2}\) | \(3\) | \(\dfrac{1}{2}\) | \(0\) |
Vì \(x,y\in N\Rightarrow\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
Vậy \(\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
2xy - x + 2y = 13
\(\Leftrightarrow\) 2y(x + 1) - x - 1 = 12
\(\Leftrightarrow\) (2y - 1)(x + 1) = 12
Vì y là số tự nhiên 2y - 1 là ước lẻ của 12. Lại có x + 1 là số tự nhiên nên 2y - 1 là số tự nhiên \(\Rightarrow2y-1\in\left\{1;3\right\}\). Ta có bảng sau:
2y - 1 | 1 | 3 |
x + 1 | 12 | 4 |
y | 1 | 2 |
x | 11 | 3 |
\(2xy-x+2y=13\)
\(x\left(2y-1\right)+2y-1=12\)
\(x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\left(2y-1\right).\left(x+1\right)=12\)
\(\Rightarrow2y-1,x+1\inƯ\left(12\right)=\left\{\pm1,\pm2,\pm3,\pm4,\pm6,\pm12,\right\}\)ư
mà 2y-1 là số lẻ =>\(2y-1\in\left\{\pm1,\pm3\right\}\)
=> \(x+1\in\left\{\pm12,\pm4\right\}\)
đến đây tự tính nha =)
Bài 1. Tìm x và y
a) 2xy + x + 2y = 13
<=> 2xy + x + 2y + 1 = 12
<=> x ( 2y + 1 ) + ( 2y + 1 ) = 12
<=> ( 2y + 1 ) ( x + 1 ) = 12
\(\Leftrightarrow\hept{\begin{cases}2y+1=12\\x+1=12\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2y=12-1\\x=12-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=5,5\\x=11\end{cases}}\)
Vậy ...........
\(2xy+x+2y=13\)
\(\Rightarrow2y\left(x+1\right)+x=13\)
\(\Rightarrow2y\left(x+1\right)+x+1=14\)
\(\left(x+1\right)\left(2y+1\right)=14\)
lập bảng nha bạn......
bạn ở dưới làm sai rồi.đừng theo.