Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1.3.5....49}{26.27...50}\)
= \(\frac{1.3.5...49.2.4.6...50}{26.27...50.2.4.6...50}\)
=\(\frac{1.2.3.4.5.....49.50}{1.2.3.4.5.....49.50.2^{25}}\)
= \(\frac{1}{2^{25}}\)
Đặt A=1/2+1/4+1/8+...+1/256
2A=2/4+2/8+2/16+...+2/512
2A—A=(2/4+2/8+2/16+...+2/512—1/2+1/4+1/8+...+1/256)
A=2/512—1/2
Mình nghĩ đề bài thế này mới đúng : 1.2.3+2.3.4+...+48.49.50
Đặt B = 1.2.3 + 2.3.4 + ....... + 48.49.50
B = 1.2.3 + 2.3.4 +....+ 48.49.50
\(\Rightarrow\)4B= 1.2.3.4 + 2.3.4.4 +.....+48.49.50.4
=1.2.3.4 + 2.3.4.(5-1) +.....+48.49.50.(51-47)
=1.2.3.4 + 2.3.4.5 - 1.2.3.4 +.....+ 48.49.50.51 - 47.48.49.50
=48.49.50.51
= 1499400
Vậy 1.2.3 + 2.3.4 + ....... + 48.49.50 = 1499400
\(\left\{{}\begin{matrix}H_1=\dfrac{1}{4}\left(H_1+H_2\right)=\dfrac{1}{4}.140^0=35^0\\H_2=\left(H_1+H_2\right)-H_1=140^0-35^0=105^0\end{matrix}\right.\)
Đề bài :
a) dãy các phân số trên có phải theo quy luật ko ?
b) tính tổng các phân số của dãy trên
1) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}\)
\(=\dfrac{49}{50}\)
2) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{13}{39}-\dfrac{1}{39}=\dfrac{12}{39}=\dfrac{4}{13}\)
3) \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{73.76}\)
\(=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=\dfrac{1}{4}-\dfrac{1}{76}\)
\(=\dfrac{19}{76}-\dfrac{1}{76}=\dfrac{18}{76}=\dfrac{9}{38}\)
1)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}\\ =\dfrac{49}{50}\)
2)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\\ =\dfrac{1}{3}-\dfrac{1}{39}\\ =\dfrac{13}{39}-\dfrac{1}{39}\\ =\dfrac{12}{39}=\dfrac{4}{13}\)
3) \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{73.76}\\ =\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{73}-\dfrac{1}{79}\\ =\dfrac{1}{4}-\dfrac{1}{79}\\ =\dfrac{75}{316}\)
a: BC=18-9=9cm
b: C nằm giữa A và B
CA=CB
=>C là trung điểm của AB
c: BK=9/2=4,5cm
=>AK=18-4,5=13,5cm
\(a,-\left(m+n-k\right)+\left(m-k\right)-\left(-m+n\right)\\ =-m-n+k+m-k+m-n\\ =\left(-m+m+m\right)+\left(-n-n\right)+\left(k-k\right)\\ =m-2n\)
\(b,\left(x-y\right)-\left(x+y\right)-\left(2x-3y\right)\\ =x-y-x-y-2x+3y\\ =\left(x-x-2x\right)+\left(-y-y+3y\right)\\ =-2x+y\)
\(3n-2\inƯ\left(15\right)\) \(=\left\{1;-1;3;-3;5;-5;15;-15\right\}.\)
\(\Leftrightarrow n\in\left\{1;\dfrac{1}{3};\dfrac{5}{3};\dfrac{-1}{3};\dfrac{7}{3};-1;\dfrac{17}{3};\dfrac{-13}{3}\right\}.\)
Mà \(n\ne\dfrac{2}{3};n\in Z.\)
\(\Rightarrow n\in\left\{1;-1\right\}.\)
\(B=\frac{1}{1.4}+\frac{2}{4.10}+\frac{3}{10.19}+\frac{4}{19.31}\)
\(3B=\frac{3}{1.4}+\frac{6}{4.10}+\frac{9}{10.19}+\frac{12}{19.31}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+\frac{1}{10}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}\)
\(=1-\frac{1}{31}=\frac{31}{31}-\frac{1}{31}=\frac{30}{31}\)
\(\Rightarrow B=\frac{30}{31}\div3=\frac{10}{31}\)
Vậy \(B=\frac{10}{31}\).
B = 1/1.4 + 2/4.10 + 3/10.19 + 4/19.31
=> 3B = 3/1.4 + 6/4.10 + 9/10.19 + 12/19.31
=> 3B = 1 - 1/4 + 1/4 - 1/10 + 1/10 - 1/19 + 1/19 - 1/31
=> 3B = 1 - 1/31
=> 3B = 30/31
=> B = 30/31 : 3
=> B = 10/31
Vậy B = 10/31