Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
Theo đề , ta có : \(12a=72b\)
\(\Rightarrow\dfrac{a}{72}=\dfrac{b}{12}\) và \(a-b=80\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{a}{72}=\dfrac{b}{12}=\dfrac{a-b}{72-12}=\dfrac{80}{60}=\dfrac{4}{3}\)
\(\Rightarrow a=\dfrac{4}{3}.72=96\)
\(\Rightarrow b=\dfrac{4}{3}.12=16\)
Bài 3:
a) \(\Rightarrow\dfrac{2}{15}x=-\dfrac{11}{15}\Rightarrow x=-\dfrac{11}{2}\)
b) \(\Rightarrow\left|x+\dfrac{1}{3}\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=5\\x+\dfrac{1}{3}=-5\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{14}{3}\\x=-\dfrac{16}{3}\end{matrix}\right.\)
Bài 4:
Áp dụng t/c dtsbn:
\(\dfrac{a}{11}=\dfrac{b}{9}=\dfrac{c}{12}=\dfrac{a-b+c}{11-9+12}=\dfrac{-28}{14}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).11=-22\\b=\left(-2\right).9=-18\\c=\left(-2\right).12=-24\end{matrix}\right.\)