Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi vì `P>0AAx>=0,x ne 1/2` mà phải tìm để `P<=0` nên nhất thiết mẫu là `2sqrtx-1` mặt khác còn lý do nữa là `x ne 1/2` mà không phải là `1/4` nên mình vẫn băn khoăn nhưng lý do đầu có vẻ thuyết phục hơn và sửa lại là `x ne 1/4` nhé!
`|P|>=P`
Mà `|P|>=0`
`=>P<=0`
`<=>(sqrtx+2)/(2sqrtx-1)<=0`
Mà `sqrtx+2>=2>0AAx>=0`
`<=>2sqrtx-1<0`
`<=>2sqrtx<1`
`<=>sqrtx<1/2`
`<=>x<1/4`
Vậy với `0<=x<1/4` thì `|P|>=P.`
19.
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)=4\Rightarrow-2\le a+b\le2\)
\(P=3\left(a+b\right)+ab=3\left(a+b\right)+\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=\dfrac{1}{2}\left(a+b\right)^2+3\left(a+b\right)-1\)
Đặt \(a+b=x\Rightarrow-2\le x\le2\)
\(P=\dfrac{1}{2}x^2+3x-1=\dfrac{1}{2}\left(x+2\right)\left(x+4\right)-5\ge-5\) (đpcm)
Dấu "=" xảy ra khi \(x=-2\) hay \(a=b=-1\)
20.
Đặt \(P=2a+2ab+abc\)
\(P=2a+ab\left(2+c\right)\le2a+\dfrac{a}{4}\left(b+2+c\right)^2=2a+\dfrac{a}{4}\left(7-a\right)^2\)
\(P\le\dfrac{1}{4}\left(a^3-14a^2+57a-72\right)+18=18-\dfrac{1}{4}\left(8-a\right)\left(a-3\right)^2\le18\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;2;0\right)\)
\(A=\dfrac{4x+2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}\left(2\sqrt{x}+1\right)+2}{2\sqrt{x}+1}=2\sqrt{x}+\dfrac{2}{2\sqrt{x}+1}\)
\(=2\sqrt{x}+1+\dfrac{2}{2\sqrt{x}+1}-1\ge2\sqrt{\left(2\sqrt{x}+1\right)\cdot\dfrac{2}{2\sqrt{x}+1}}-1=2\sqrt{2}-1\)
=> A \(\ge2\sqrt{2}-1\)
Dấu "=" xảy ra <=> \(2\sqrt{x}+1=\dfrac{2}{2\sqrt{x}+1}\)
<=> \(\left(2\sqrt{x}+1\right)^2=2\) <=> \(\left[{}\begin{matrix}2\sqrt{x}+1=2\\2\sqrt{x}+1=-2\left(loại\right)\end{matrix}\right.\)
<=> \(\sqrt{x}=\dfrac{1}{2}\) <=> \(x=\dfrac{1}{4}\)(tm)
Vậy minA = \(2\sqrt{2}-1\) khi x = 1/4
3:
a: \(\Leftrightarrow x+1-6\sqrt{x+1}-9=0\)
=>\(\left(\sqrt{x+1}-3\right)=0\)
=>x+1=9
=>x=8
b: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-\dfrac{7}{4}\sqrt{\left(\sqrt{\dfrac{1}{2}x+1}+3\right)}}=10\)
=>\(\sqrt{\dfrac{1}{2}x-\dfrac{7}{4}\sqrt{\dfrac{1}{2}x+1}-\dfrac{21}{4}}=10\)
=>\(\dfrac{1}{2}x-\dfrac{21}{4}-\dfrac{7}{4}\sqrt{\dfrac{1}{2}x+1}=100\)
=>\(\dfrac{7}{4}\cdot\sqrt{\dfrac{1}{2}x+1}=\dfrac{1}{2}x-\dfrac{21}{4}-100=\dfrac{1}{2}x-\dfrac{421}{4}\)
=>\(\sqrt{\dfrac{1}{2}x+1}=\dfrac{2}{7}x-\dfrac{421}{7}\)
=>1/2x+1=(2/7x-421/7)^2
=>1/2x+1=4/49x^2-1684/49x+177241/49
=>\(x\simeq249,77;x\simeq177,36\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\sqrt{3x+1}=7\\ \Leftrightarrow3x+1=49\\ \Leftrightarrow x=16\)
b) \(3\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=21\\ \Leftrightarrow9\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=21\\ \Leftrightarrow7\sqrt{x-3}=21\\ \Leftrightarrow\sqrt{x-3}=3\\ \Leftrightarrow x-3=9\\ \Leftrightarrow x=12\)
a: Xét (O) có
ΔAMB nội tiếp đường tròn
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét tứ giác AMCK có
\(\widehat{AKC}+\widehat{AMC}=180^0\)
nên AMCK là tứ giác nội tiếp
hay A,M,C,K cùng thuộc một đường tròn
bạn tự vẽ hình giúp mik nha
a.ta có \(\Delta\)ABC nội tiếp (O) và AB là đường kính nên \(\Delta\)ABC vuông tại C
trong \(\Delta ABC\) vuông tại C có
AC=AB.cosBAC=10.cos30=8,7
BC=AB.sinCAB=10.sin30=5
ta có Bx là tiếp tuyến của (O) nên Bx vuông góc với AB tại B
trong \(\Delta\)ABE vuông tại B có
\(cosBAE=\dfrac{AB}{AE}\Rightarrow AE=\dfrac{AB}{cosBAE}=\dfrac{10}{cos30}=11,5\)
mà:CE=AE-AC=11,5-8,7=2,8
b.áp dụng pytago vào \(\Delta ABE\) vuông tại B có
\(BE=\sqrt{AE^2-AB^2}=\sqrt{11,5^2-10^2}=5,7\)
a: Xét (O) có
EM,EA là tiếp tuyến
nên EM=EA và OE là phân giác của góc MOA(1)
Xét (O) có
FM,FB là tiếp tuyến
nên FM=FB và OF là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc FOE=1/2*180=90 độ
b: EF=EM+MF
=>EF=EA+FB
c: Xét ΔOEF vuông tại O có OM là đường cao
=>ME*MF=OM^2
=>ME*MF=OA^2
\(1,\\ a,=2\sqrt{3}+12\sqrt{3}-6\sqrt{3}-2\sqrt{3}=6\sqrt{3}\\ b,=3-\sqrt{7}-\sqrt{\left(2+\sqrt{7}\right)^2}=3-\sqrt{7}-2-\sqrt{7}=1-2\sqrt{7}\\ c,=2\sqrt{5}+\dfrac{8\left(3-\sqrt{5}\right)}{4}-\dfrac{\sqrt{5}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}=2\sqrt{5}+6-2\sqrt{5}-\sqrt{5}=6-\sqrt{5}\)
\(2,\\ 1,PT\Leftrightarrow\left|5x-1\right|=4\Leftrightarrow\left[{}\begin{matrix}5x-1=4\\1-5x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{5}\end{matrix}\right.\\ 2,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x+5}=4\\ \Leftrightarrow\sqrt{x+5}=2\Leftrightarrow x+5=4\Leftrightarrow x=-1\left(tm\right)\)