K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

1. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \sqrt{x-1}=13-x$

\(\Rightarrow \left\{\begin{matrix} 13-x\geq 0\\ x-1=(13-x)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 13\\ x^2-27x+170=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 13\\ (x-17)(x-10)=0\end{matrix}\right.\)

\(\Rightarrow x=10\) (tm)

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

2. ĐKXĐ: $x\geq 3$

\(3\sqrt{x+34}-3\sqrt{x-3}=1\)

\(\Leftrightarrow 3\sqrt{x+34}=3\sqrt{x-3}+1\)

\(\Rightarrow 9(x+34)=9x+6\sqrt{x-3}-26\)

\(\Leftrightarrow \frac{166}{3}=\sqrt{x-3}\)

$\Leftrightarrow x-3=\frac{27556}{9}$

$\Leftrightarrow x=\frac{27583}{9}$ (tm)

 

Câu 2: 

Ta có: \(x^2-2\left(m+1\right)x+m^2+4=0\)

a=1; b=-2m-2; \(c=m^2+4\)

\(\text{Δ}=b^2-4ac\)

\(=\left(-2m-2\right)^2-4\cdot\left(m^2+4\right)\)

\(=4m^2+8m+4-4m^2-16\)

=8m-12

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow8m>12\)

hay \(m>\dfrac{3}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)=2m+2\\x_1x_2=m^2+4\end{matrix}\right.\)

Vì x1 là nghiệm của phương trình nên ta có: 

\(x_1^2-2\left(m+1\right)\cdot x_1+m^2+4=0\)

\(\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta có: \(x_1^2+2\left(m+1\right)x_2=2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2-2m^2-20=0\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-3m^2-24=0\)

\(\Leftrightarrow2\left(m+1\right)\cdot\left(2m+2\right)-3m^2-24=0\)

\(\Leftrightarrow4m^2+8m+4-3m^2-24=0\)

\(\Leftrightarrow m^2+8m-20=0\)

Đến đây bạn tự tìm m là xong rồi

23 tháng 7 2021

Cảm ơn b nha

Bài 7:

Ta có: \(P=\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right):\left(1+\dfrac{\sqrt{x}}{x+1}\right)\)

\(=\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}}{x\sqrt{x}-1}\)

28 tháng 10 2021

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

14 tháng 10 2021

Bài 1: 
b: Xét ΔADC vuông tại D có DH là đường cao ứng với cạnh huyền AC

nên \(\left\{{}\begin{matrix}AD^2=AH\cdot AC\\DC^2=CH\cdot CA\end{matrix}\right.\)

\(\Leftrightarrow\left(\dfrac{BC}{DC}\right)^2=\dfrac{AH}{CH}\)

1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)

\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2) Thay \(x=4-2\sqrt{3}\) vào P, ta được:

\(P=\dfrac{2\left(\sqrt{3}-1\right)+1}{\sqrt{3}-1+1}=\dfrac{2\sqrt{3}-2+1}{\sqrt{3}}=\dfrac{2\sqrt{3}-1}{\sqrt{3}}=\dfrac{6-\sqrt{3}}{3}\)

 

29 tháng 6 2021

giúp mik câu 3 ạ

 

3: 

a: \(\Leftrightarrow x+1-6\sqrt{x+1}-9=0\)

=>\(\left(\sqrt{x+1}-3\right)=0\)

=>x+1=9

=>x=8

b: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-\dfrac{7}{4}\sqrt{\left(\sqrt{\dfrac{1}{2}x+1}+3\right)}}=10\)

=>\(\sqrt{\dfrac{1}{2}x-\dfrac{7}{4}\sqrt{\dfrac{1}{2}x+1}-\dfrac{21}{4}}=10\)

=>\(\dfrac{1}{2}x-\dfrac{21}{4}-\dfrac{7}{4}\sqrt{\dfrac{1}{2}x+1}=100\)

=>\(\dfrac{7}{4}\cdot\sqrt{\dfrac{1}{2}x+1}=\dfrac{1}{2}x-\dfrac{21}{4}-100=\dfrac{1}{2}x-\dfrac{421}{4}\)

=>\(\sqrt{\dfrac{1}{2}x+1}=\dfrac{2}{7}x-\dfrac{421}{7}\)

=>1/2x+1=(2/7x-421/7)^2

=>1/2x+1=4/49x^2-1684/49x+177241/49

=>\(x\simeq249,77;x\simeq177,36\)

b: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay AH=12(cm)

Xét ΔAHB vuông tại H có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AH}{AB}=\dfrac{12}{13}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{5}{13}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{12}{5}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{5}{12}\)

\(Q=x-2-2\sqrt{x-2}+4\)

\(=\left(\sqrt{x-2}-1\right)^2+3>=3\)

Dấu = xảy ra khi x=3

1 tháng 7 2023

mik cảm mơn nhìu nha

 

11 tháng 7 2023

\(\sqrt{x^2-2x\sqrt{11}+11}=10\)

\(< =>\sqrt{\left(x-\sqrt{11}\right)^2}=10\\ < =>\left|x-\sqrt{11}\right|=10\\ < =>\left[{}\begin{matrix}x-\sqrt{11}=10\\x-\sqrt{11}=-10\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=10+\sqrt{11}\\x=-10+\sqrt{11}\end{matrix}\right.\)

 

\(1-\sqrt{1+5x}=x\left(đk:x\ge-\dfrac{1}{5}\right)\\ < =>\sqrt{1+5x}=1-x\\ < =>\left\{{}\begin{matrix}1-x\ge0\\1+5x=1-2x+x^2\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le1\\x^2-7x=0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le1\\x\left(x-7\right)=0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le1\\\left[{}\begin{matrix}x=0\left(tm\right)\\x=7\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ < =>x=0\)