Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) bạn tự vẽ tam giác vuông ABC nha
Áp dụng định lí Pytago vào tam giác vuông ABC ta có: BC2=AB2+AC2 <=> BC2= 42+52=16+25=41 => BC=\(\sqrt{BC^2}\)= \(\sqrt{41}\)cm
b) bạn tự vẽ tam giác vuông cân MNP nha
Áp dụng định lí Pytago vào tam giác vuông MNP ta có: NP2=MN2+MP2 <=> NP2=2MN2 [ vì MN=MP ( tính chất của tam giác vuông cân ) => MN2=MP2 ] <=>NP2=2 . 22=8 => NP=\(\sqrt{NP^2}\)= \(\sqrt{8}\)= 2\(\sqrt{2}\)dm
Bài 1
Do BO là tia phân giác của ∠ABC (gt)
⇒ ∠OBE = ∠OBI
Do AO là tia phân giác của ∠BAC (gt)
⇒ ∠OAE = ∠OAF
Xét hai tam giác vuông: ∆OAE và ∆OAF có:
OA chung
∠OAE = ∠OAF (cmt)
⇒ ∆OAE = ∆OAF (cạnh huyền - góc nhọn)
⇒ OE = OF (hai cạnh tương ứng) (1)
Xét hai tam giác vuông: ∆OBE và ∆OBI có:
OB chung
∠OBE = ∠OBI (cmt)
⇒ ∆OBE = ∆OBI (cạnh huyền - góc nhọn)
⇒ OE = OI (hai cạnh tương ứng) (2)
Từ (1) và (2) ⇒ OE = OF = OI
Bài 2
a) Xét hai tam giác vuông: ∆BMI và ∆CMK có:
BM = CM (gt)
∠BMI = ∠CMK (đối đỉnh)
⇒ ∆BMI = ∆CMK (cạnh huyền - góc nhọn)
⇒ BI = CK (hai canhk tương ứn
b) Do ∆BMI = ∆CMK (cmt)
⇒ MI = MK (hai cạnh tương ứng)
Xét ∆BMK và ∆CMI có:
MK = MI (cmt)
∠BMK = ∠CMI (đối đỉnh)
BM = CM (gt)
⇒ ∆BMK = ∆CMI (c-g-c)
⇒ ∠MBK = ∠MCI (hai góc tương ứng)
Mà ∠MBK và ∠MCI là hai góc so le trong)
⇒ BK // CI
a) Xét ΔAMB và ΔAMC có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔAMB=ΔAMC(c-c-c)
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
hay AM là tia phân giác của \(\widehat{BAC}\)
b) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
hay AM\(\perp\)BC
c) Ta có: M là trung điểm của BC(gt)
nên \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAMB vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AM^2=5^2-3^2=16\)
hay AM=4(cm)
d) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC(M là trung điểm của BC)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔEMB=ΔFMC(cạnh huyền-góc nhọn)
Suy ra: ME=MF(Hai cạnh tương ứng)
Xét ΔMEF có ME=MF(cmt)
nên ΔMEF cân tại M(Định nghĩa tam giác cân)
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
EB chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔABE=ΔDBE
b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có
EA=ED
\(\widehat{AEF}=\widehat{DEC}\)
Do đó: ΔAEF=ΔDEC
Suy ra: AF=DC
c:ta có: BA+AF=BF
BD+DC=BC
mà BA=BD
và AF=DC
nên BF=BC
=>ΔBFC cân tại B
mà BE là đường phân giác
nên BE là đường cao
Áp dụng BĐT cô si :
\(\frac{a+\left(b+c\right)}{2}\ge\sqrt{a\left(b+c\right)}>0\)
\(\Rightarrow\frac{2}{a+b+c}\le\frac{1}{\sqrt{a\left(b+c\right)}}\Rightarrow\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)
tương tự : \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
\(=>\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\left(1\right)\)
Do 2 > 1 nên đpcm