K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

A/ Ta có: \(\widehat{B_1}=\widehat{D_1}=60^o\)

Mà 2 góc này ở vị trí đồng vị 

Nên a//b

=> \(\widehat{ACD}=\widehat{CAB}=90^o\)( 2 góc so le trong)

=> c⊥b

b/ Ta có : \(\widehat{B_1}+\widehat{B_2}=180^o\)( 2 góc kề bù)

=> \(\widehat{B_2}=180^o-\widehat{B_1} \)

=>\(\widehat{B_2}=180^o-60^o=120^o \)

=> \(\widehat{B_4}=\widehat{B_2}=120^o\)(đối đỉnh)

Ta có: \(\widehat{B_1}=\widehat{B_3}=60^o\)(đối đỉnh)

15 tháng 2 2017

cho mik bản dịch và cách làm nha

15 tháng 2 2017

nhưng gửi vào link mik nhé ko thì bọn bn mik sẽ học luôn mấthehe

15 tháng 2 2017

\(\frac{47}{32}\)

15 tháng 2 2017

bạn làm như thế nào?

15 tháng 10 2017

xinh nhỉ banh

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)

20 tháng 7 2017

Kẻ Cz//By (z thuộc nửa mặt phẳng bờ AC chứa B)

Ta có: góc zCB=góc CBy = 30 độ (so le trong)

Mà góc zCB + góc zCA=120 độ

=> góc zCA=90 độ.

=> Cz//Ax (cùng vuông góc AC)

Mà Cz//By => Ax//By

10 tháng 9 2017

a a' a//a' mk chưa chắc đã đúng :D

7 tháng 5 2017

\(x-y=9\Rightarrow x=9+y\Rightarrow y=x-9\)

Ta có:

\(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)

\(=\dfrac{3x+x-9}{3x+y}-\dfrac{3y+y+9}{3y+x}\)

\(=\dfrac{3x+\left(x-9\right)}{3x+y}-\dfrac{3y+\left(y+9\right)}{3y+x}\)

\(=\dfrac{3x+y}{3x+y}-\dfrac{3y+x}{3y+x}\)

\(=1-1\)

\(=0\)

Vậy biểu thức \(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)khi \(x-y=9\) là 0

5 tháng 5 2017

\(x-y=9\Rightarrow y=x-9\) thay vào biểu thức B ta được :

\(B=\dfrac{4x-9}{3x+\left(x-9\right)}-\dfrac{4\left(x-9\right)+9}{3\left(x-9\right)+x}=\dfrac{4x-9}{4x-9}-\dfrac{4x-27}{4x-27}=1-1=0\)

Vậy giá trị của B là 0 tại \(x-y=9\)