Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông ABC :
\(AB^2=HB\cdot BC\)
\(\Leftrightarrow AB^2=HB\cdot\left(HB+HC\right)\)
\(\Leftrightarrow3^2=HB^2+3.2HB\)
\(\Leftrightarrow HB^2+3.2HB-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HB=1.8\left(N\right)\\HB=-5\left(L\right)\end{matrix}\right.\)
Ta có: \(BH+HC=BC\Rightarrow BC=BH+3,2\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\)
\(\Leftrightarrow3^2=BH.\left(BH+3,2\right)\)
\(\Leftrightarrow BH^2+3,2BH-9=0\) (bấm máy phương trình bậc 2: \(x^2+3,2x-9=0\))
\(\Rightarrow\left[{}\begin{matrix}BH=-5< 0\left(loại\right)\\BH=1,8\end{matrix}\right.\)
Vậy \(BH=1,8\left(cm\right)\)
14a) \(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{2}.2+2^2}-\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{2}.2+2^2}\)
\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)
\(=\sqrt{5}+2-\sqrt{5}+2=4\)
b) \(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}-\sqrt{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
15a) \(P=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)
\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
b) \(Q=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{3^2+2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}+\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left|3+2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}=6\)
Bài 4:
\(a,A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ P=A:B=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m-\sqrt{x}+x\\ \Leftrightarrow x-1=m-\sqrt{x}+x\\ \Leftrightarrow m=\sqrt{x}-1\)
a) gọi PT đường thẳng BC là : y =ax+b (d)
=> B thuộc (d) => -a +b = -1 => b= a-1
C thuộc (d) => 4a+b = 9 thay b =a -1 => 5a=10 => a= 2
=> b =2-1 =1
Vậy BC; y = 2x +1
b) tại y =3 => BC: 2x+1 = 3 => x =1 => BC cắt y= 3 tại M(1 ; 3)
Tại y =3 => 2y+x - 7 = 0 => x =1 => 2y +x -7 =0 cắt y=3 tại M
=> 3 đườngthẳng đồng quy tại M(1;3)
c) BC: y = 2x +1 với x =2
=> y = 2.2+1 =5 => A(2;5) nằm trên BC => A;B;C thẳng hàng