Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta thấy:
\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Và \(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
A=3n(n^2+674)
TH1: n=3k
=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9
TH2: n=3k+1
=>A=3(3k+1)(9k^2+6k+1+674)
=3(3k+1)(9k^2+6k+675)
=9(3k+1)(3k^2+2k+225) chia hết cho 9
TH3: n=3k+2
=>A=3(3k+2)(9k^2+12k+4+674)
=3(3k+2)(9k^2+12k+678)
=9(3k+2)(3k^2+4k+226) chia hết cho 9
Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)
Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)
Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3
Thật vậy
Ta có TH1: n = 3k + 1 (k thuộc Z)
=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3
TH2: n = 3k + 2 (k thuộc Z)
=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3
=> n(n + 1)(2n + 1) chia hết cho 3 (2)
Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n
bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm
Theo đề bài ta có :
\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
=> \(\left(n^2+3n+1\right)^2-1=n\left(n+3\right)\left(n^2+n+2n+2\right)\)
= \(n\left(n+3\right)\left(n\left(n+1\right)+2\left(n+1\right)\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)
Ta Thấy :
\(n;n+1;n+2;n+3\)là 4 số tự nhiên liên tiếp
Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
Tích của 4 số tự nhiên liên tiếp cũng chia hết cho 4 vì có 2 số chẵn trong 4 số
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4\)
Tích của 2 số tự nhiên liên tiếp chia hết cho 2
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\)
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\left(đpcm\right)\)
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)
A = n2(n + 1) + 2n(n+1) = n(n+1)(n+2)
Ta thấy A là tích của 3 số tự nhiên liên tiếp nên nó chia hết cho 3
Và n(n+1) luôn chia hết cho 2 vì là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.
Số A vừa chia hết cho 2 vừa chia hết cho 3 nên A chia hết cho 2*3 = 6 . ĐPCM
Đinh Thùy Linh Bạn cần bổ sung thêm nữa :
\(\left(2,3\right)=1\)
n3 - n
= n ( n2 - 1)
= ( n - 1 ) n (n + 1)
Đây la tích ba số nguyen liên tiep nen chia het cho 6 voi moi so nguyen n
Nhớ ủg hộ mk nha pn