K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 9 2021

Bài 1

\(\hept{\begin{cases}a.x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\\b.x^3+8y^3=\left(x+2y\right)\left(x^2+2xy+4y^2\right)\end{cases}}\)

bài 2

\(\hept{\begin{cases}a.\left(x-3\right)\left(x^2+3x+9\right)=x^3-27\\\left(2y+z\right)\left(4y^2-2yz+z^2=8y^3-z^3\right)\end{cases}}\)

bài 3.

\(\hept{\begin{cases}a.\left(x-3\right)\left(x^2+3x+9\right)-\left(30+x^3\right)=\left(x^2-27\right)-\left(30+x^3\right)=-57\\b.\left(2x-y\right)\left(4x^2+2xy+y^2\right)+y^3=8x^3-y^3+y^3=8x^3\end{cases}}\)

bài 4.

\(a.\left(x+2\right)\left(x^2-2x+4\right)=x^3+2x\Leftrightarrow x^3+8=x^3+2x\)

\(\Leftrightarrow2x=8\Leftrightarrow x=4\)

\(b.\left(3x-2\right)\left(9x^2+6x+4\right)-27x^3=3x-5\)

\(\Leftrightarrow27x^3-8-27x^3=3x-5\Leftrightarrow3x=-3\Leftrightarrow x=-1\)

4 tháng 9 2021

Bài 1:

a) x3-8=x3-23=(x-2)(x2+2x+22)

b) x3+8y3=x3+(2y)3=(x+2y)[x2-2xy+(2y)2 ]

Bài 2:

a) (x-3)(x2+3x+9)=x3-33=x3+(-3)3

b) (2y+z)(4y2-2yz+z2)=(2y)3+x3

Bài 3:

a) (x-3)(x2+3x+9)-(30-x3)

=x3-33-30-x3

=-27-30=-57

b) (2x-y)(4x2+2xy+y2)+y3

=(2x)3-y3+y3

=8x3

Bài 4:

a) (x+2)(x2-2x+4)=x3+2x

=> x3+23=x3+2x

=> x3+8=x3+2x

=> x3+8-x3=2x

=>8=2x

=>x=8:2=>x=4

b) (3x-2)(9x2+6x+4)-27x3=3x-5

=>(3x)3-23-(3x)3=3x-5

=>-8=3x-5

=>-8+5=3x

=>3x=-3=>x=-1

10 tháng 11 2021

\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)

10 tháng 11 2021

cảm ơn bạn minh nhiều nha

9 tháng 10 2021

a) \(A=x^4+4x+7=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(minA=3\Leftrightarrow x=-2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxC=7\Leftrightarrow x=2\)

d) \(D=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxD=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

14 tháng 8 2021

\(d,\left(2x-1\right)\left(x+3\right)+2x\left(2-x\right)=10-8\left(x+4\right)\\ \Leftrightarrow2x^2+6x-x-3+4x-2x^2=10-8x-32\\ \Leftrightarrow17x=19\Leftrightarrow x=\dfrac{19}{17}\)

vậy phương trình đã cho có nhiệm \(x=\dfrac{19}{17}\)

Ta có: \(\left(2x-1\right)\left(x+3\right)+2x\left(2-x\right)=10-8\left(x+4\right)\)

\(\Leftrightarrow2x^2+6x-x-3+4x-2x^2=-8x-22\)

\(\Leftrightarrow18x=-19\)

hay \(x=-\dfrac{19}{18}\)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:
a. $(x^2-1)(x^2+2x)=x^4+2x^3-x^2-2x$

b. $(2x-1)(3x+2)(3-x)=(6x^2+4x-3x-2)(3-x)$

$=(6x^2+x-2)(3-x)=18x^2-6x^3+3x-x^2-6+2x$

$=-6x^3+17x^2+5x-6$

c.

$(x+3)(x^2+3x-5)=x^3+3x^2-5x+3x^2+9x-15$

$=x^3+6x^2+4x-15$

d.

$(x+1)(x^2-x+1)=x^3+1^3=x^3+1$

e.

$(2x^3-3x-1)(5x+2)=10x^4+4x^3-15x^2-6x-5x-2$

$=10x^4+4x^3-15x^2-11x-2$

f.

$(x^2-2x+3)(x-4)=x^3-4x^2-2x^2+8x+3x-12$

$=x^3-6x^2+11x-12$
 

 

21 tháng 10 2021

\(=3x\left(x-3\right)\)

29 tháng 5 2022

Hướng dẫn: A đạt GTLN khi \(\dfrac{1}{A}\) đạt GTNN

Ta có: \(x^2+2\ge0\forall x\)

\(\Rightarrow A=\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)

Vậy GTLN của A là 1/2

=> A

29 tháng 5 2022

Câu 2: B đạt GTLN khi và chỉ khi x2 đạt giá trị nhỏ nhất

⇔ x2=0 ⇒B = 10 - 0= 0 

  Chọn đáp án B nhe

Câu 3: Có A= 4x - 2x2= (-2x+ 4x - 1) + 1=\(-2\left(x^2-2x+1\right)+1\)

⇔ A= \(-2\left(x-1\right)^2+1\le1\)

Chọn đáp án B nha

 

2 tháng 8 2021

\(< =>\left(a+b\right)^2+2\left(a+b\right)c+c^2-3ab-3bc-3ca=0\)

\(< =>a^2+2ab+b^2+2ac+2bc-3ab-3bc-3ca=0\)

\(< =>a^2+b^2+c^2-ab-bc-ca=0\)

\(< =>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(< =>a^2-2ab+b^2+a^2-2ac+c^2+b^2-2bc+c^2=0\)

\(< =>\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

dấu"=" xảy ra<=>a=b=c

2 tháng 8 2021

Ta có :

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)-3\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ac=0\)(nhân 2 vế cho 2)

\(\Leftrightarrow\)\(a^2+b^2+c^2+\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2=0\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}a^2=0,b^2=0,c^2=0\\\left(a+b\right)^2=0\\\left(b+c\right)^2=0\\\left(a+c\right)^2=0\end{matrix}\right.\Leftrightarrow a=b=c=0\left(đcpcm\right)\)

 

1 tháng 12 2021

\(a,\dfrac{13z}{63x^2y^3}=\dfrac{65z^3}{315x^2y^3z^2};\dfrac{-y}{15xz^2}=\dfrac{-21xy^4}{315x^2y^3z^2};\dfrac{2x}{9y^2z}=\dfrac{70x^3yz}{315x^2y^3z}\\ b,\dfrac{x}{x-y}=\dfrac{-x\left(y-x\right)^2}{\left(y-x\right)^3};\dfrac{y}{\left(x-y\right)^2}=\dfrac{y}{\left(y-x\right)^2}=\dfrac{y}{\left(y-x\right)^3}\\ c,\dfrac{1}{2x+4}=\dfrac{x-2}{2\left(x+2\right)\left(x-2\right)};\dfrac{x}{2x-4}=\dfrac{x\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)};\dfrac{3}{4-x^2}=-\dfrac{6}{2\left(x-2\right)\left(x+2\right)}\)