
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0)
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)
dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0)
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (cmt).
+ \(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)
+ MB = NC (gt).
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).
Xét tam giác ABC có: AB = AC (cmt).
\(\Rightarrow\) Tam giác ABC cân tại A.
b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)
Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{}\) (đối đỉnh).
\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)
Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:
+ MB = NC (gt).
+ \(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)
\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).
c/ Tam giác MBH = Tam giác NCK (cmt).
\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).
Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).
\(\Rightarrow\) Tam giác OMN tại O.

Tiến hành phân bổ bình quân theo tỷ lệ thuận số người mỗi đội, ta có
Số dụng cụ đội 1: 108/(10+12+5) x 10 = 40
Số dụng cụ đội 2: 108/(10+12+5)x12 = 48
Số dụng cụ đội 3: 108/(10+12+5)x5 = 20

Ta có 2 TH:
+ Th1: \(x-2=x\)
=>\(x-x=2\)
=>\(0=2\)( Vô lý, loại)
+ Th2: \(x-2=-x\)
=>\(x+x=2\)
=>\(2x=2\)
=>\(x=1\)
Vậy x=1
\(|x-2|=x\)
\(\Rightarrow TH1:x-2=x\)
\(x-x=2\)
\(0=2\)
\(\Rightarrow x\in\varnothing\)
\(TH2:x-2=-x\)
\(x+x=2\)
\(2x=2\)
\(\Rightarrow x=1\)
Vậy \(x\in\left\{\varnothing;1\right\}\)

Cái này khá ez :>>
\(a,A\left(x\right)+\left(3x^2-4x+1\right)=5x-x^2\)
\(A\left(x\right)=5x-x^2-3x^2+4x-1\)
Ta có : \(9x-4x^2-1=0\)
Vậy phương trình vô nghiệm.
b, \(A\left(x\right)=5x^3-2x=x^3+x-1\)
\(A\left(x\right)=x^3+x-1-5x^3+2x\)
Ta có : \(-4x^3+3x-1=0\)
\(\left(-4x^2-4x+1\right)\left(x+1\right)=0\)
\(\left(2x-1\right)^2\left(x+1\right)=0\)
\(\orbr{\begin{cases}\left(2x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}}\)

a: Ta có: \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
\(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)
Do đó: \(\widehat{ABC}=\widehat{ECN}\)
Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
BD=CE
\(\widehat{MBD}=\widehat{NCE}\)
Do đó: ΔMBD=ΔNCE
=>DM=EN
b: Ta có: DM\(\perp\)BC
EN\(\perp\)BC
Do đó: DM//EN
Xét ΔIDM vuông tại D và ΔIEN vuông tại E có
MD=EN
\(\widehat{MDI}=\widehat{ENC}\)(hai góc so le trong, DM//EN)
Do đó: ΔIDM=ΔIEN
=>IM=IN
=>I là trung điểm của MN

a: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
=>ΔABE=ΔACD
c: Xét ΔIDB và ΔIEC có
góc IDB=góc IEC
DB=EC
góc IBD=góc ICE
=>ΔIDB=ΔIEC
d: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
=>góc BAI=góc CAI
=>AI là phângíac của góc BAC
e: AB=AC
IB=IC
=>AI là trung trực của BC
=>AI vuông góc BC
b, \(B=\frac{15|x+3|+32}{6|x+3|+8}\Rightarrow2B=\frac{30|x+3|+64}{6|x+3|+8}=2B=5+\frac{56}{6|x+3|+8}\)
ta co: \(|x+3|>=0\Leftrightarrow6|x+3|>=0\Leftrightarrow6|x+3|+8>=8\Leftrightarrow\frac{56}{6|x+3|+8}< =8\Leftrightarrow5+\frac{56}{6|x+3|+8}\)>=13
vay de 2B dat gtnn thi x+3=0 suy ra x=-3
a, Ta có : \(5-\left|\frac{2}{3}-x\right|\le5\)
\(\Rightarrow A=\frac{3}{5-\left|\frac{2}{3}-x\right|}\ge\frac{3}{5}\)
Dấu ''='' xảy ra khi x = 2/3
Vậy GTNN của A bằng 3/5 tại x = 2/3