K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

b, \(B=\frac{15|x+3|+32}{6|x+3|+8}\Rightarrow2B=\frac{30|x+3|+64}{6|x+3|+8}=2B=5+\frac{56}{6|x+3|+8}\)

ta co: \(|x+3|>=0\Leftrightarrow6|x+3|>=0\Leftrightarrow6|x+3|+8>=8\Leftrightarrow\frac{56}{6|x+3|+8}< =8\Leftrightarrow5+\frac{56}{6|x+3|+8}\)>=13 

vay de 2B dat gtnn thi x+3=0 suy ra x=-3

16 tháng 8 2021

a, Ta có : \(5-\left|\frac{2}{3}-x\right|\le5\)

\(\Rightarrow A=\frac{3}{5-\left|\frac{2}{3}-x\right|}\ge\frac{3}{5}\)

Dấu ''='' xảy ra khi x = 2/3 

Vậy GTNN của A bằng 3/5 tại x = 2/3 

30 tháng 7 2016

k có ai trả lời cả

3 tháng 11 2016

bài thay giao dung ko

10 tháng 9 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

10 tháng 9 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

10 tháng 1 2022

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (cmt).

\(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)

+ MB = NC (gt).

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).

Xét tam giác ABC có: AB = AC (cmt).

\(\Rightarrow\) Tam giác ABC cân tại A.

b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)

Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{​​}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)

Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:

+ MB = NC (gt).

\(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)

\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).

c/ Tam giác MBH = Tam giác NCK (cmt).

\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).

Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).

\(\Rightarrow\) Tam giác OMN tại O.

 

12 tháng 9 2018

Tiến hành phân bổ bình quân theo tỷ lệ thuận số người mỗi đội, ta có

Số dụng cụ đội 1: 108/(10+12+5) x 10 = 40

Số dụng cụ đội 2: 108/(10+12+5)x12 = 48

Số dụng cụ đội 3: 108/(10+12+5)x5 = 20

13 tháng 9 2018

Dấu / là dấu j z bn Nguyễn Viết Lâm

Ta có 2 TH:

+ Th1: \(x-2=x\)

=>\(x-x=2\)

=>\(0=2\)( Vô lý, loại)

+ Th2: \(x-2=-x\)

=>\(x+x=2\)

=>\(2x=2\)

=>\(x=1\)

Vậy x=1

11 tháng 2 2020

\(|x-2|=x\)

\(\Rightarrow TH1:x-2=x\)

            \(x-x=2\)

            \(0=2\)

          \(\Rightarrow x\in\varnothing\)

\(TH2:x-2=-x\)

        \(x+x=2\)

        \(2x=2\)

         \(\Rightarrow x=1\)

Vậy \(x\in\left\{\varnothing;1\right\}\)

Cái này khá ez :>>

\(a,A\left(x\right)+\left(3x^2-4x+1\right)=5x-x^2\)

\(A\left(x\right)=5x-x^2-3x^2+4x-1\)

Ta có : \(9x-4x^2-1=0\)

Vậy phương trình vô nghiệm.

b, \(A\left(x\right)=5x^3-2x=x^3+x-1\)

\(A\left(x\right)=x^3+x-1-5x^3+2x\)

Ta có : \(-4x^3+3x-1=0\)

\(\left(-4x^2-4x+1\right)\left(x+1\right)=0\)

\(\left(2x-1\right)^2\left(x+1\right)=0\)

\(\orbr{\begin{cases}\left(2x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}}\)

a: Ta có: \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

\(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)

Do đó: \(\widehat{ABC}=\widehat{ECN}\)

Xét ΔMBD vuông tại D và ΔNCE vuông tại E có

BD=CE

\(\widehat{MBD}=\widehat{NCE}\)

Do đó: ΔMBD=ΔNCE

=>DM=EN

b: Ta có: DM\(\perp\)BC

EN\(\perp\)BC

Do đó: DM//EN

Xét ΔIDM vuông tại D và ΔIEN vuông tại E có

MD=EN

\(\widehat{MDI}=\widehat{ENC}\)(hai góc so le trong, DM//EN)

Do đó: ΔIDM=ΔIEN

=>IM=IN

=>I là trung điểm của MN

 

a: AD+DB=AB

AE+EC=AC

mà DB=EC và AB=AC

nên AD=AE

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

b: Xét ΔABE và ΔACD có

AB=AC

góc A chung

AE=AD

=>ΔABE=ΔACD

c: Xét ΔIDB và ΔIEC có

góc IDB=góc IEC

DB=EC

góc IBD=góc ICE

=>ΔIDB=ΔIEC

d: Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

=>ΔAIB=ΔAIC

=>góc BAI=góc CAI

=>AI là phângíac của góc BAC

e: AB=AC

IB=IC

=>AI là trung trực của BC

=>AI vuông góc BC