K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\left(\dfrac{3}{5}-\dfrac{7}{4}\right):\dfrac{23}{10}\)

\(=\dfrac{12-35}{20}\cdot\dfrac{10}{23}\)

\(=\dfrac{-23\cdot10}{23\cdot20}=-\dfrac{1}{2}\)

b: Ta có: \(\left(-\dfrac{2}{3}+\dfrac{3}{4}\right)^2\cdot\dfrac{12}{5}-\dfrac{11}{5}\)

\(=\dfrac{1}{144}\cdot\dfrac{12}{5}-\dfrac{11}{5}\)

\(=\dfrac{1}{60}-\dfrac{11}{5}=\dfrac{1}{60}-\dfrac{132}{60}=\dfrac{-131}{60}\)

NV
19 tháng 3 2022

\(6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-ax^3y^4=\left(6-a\right)x^3y^4+3x^4y^2+3x^2y^2\)

Do bậc của đa thức là 6

\(\Rightarrow6-a=0\Rightarrow a=6\)

19 tháng 3 2022

dạ em cảm ơn ạ

9 tháng 10 2021

a)\(\Leftrightarrow\left|x+1,5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1,5=4\\x+1,5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=-5,5\end{matrix}\right.\)

c)\(\Leftrightarrow-14+21x=5+10x\)

\(\Leftrightarrow11x=19\Leftrightarrow x=\dfrac{19}{11}\)

9 tháng 10 2021

đm đang suy nghĩ câu đó

Bài 4: 

a: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BM=CM

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔBAM có MA=MB

nên ΔBAM cân tại M

mà \(\widehat{B}=60^0\)

nên ΔBAM đều

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nen AM=BC/2

c: Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

mà MD là đường phân giác

nên MD là đường cao

=>MD⊥AC

mà AB⊥AC

nên MD//AB

17 tháng 11 2021

Bài 4

\(a,x:y=3:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5};y:z=4:5\Rightarrow\dfrac{y}{4}=\dfrac{z}{5}\\ \Rightarrow\dfrac{x}{12}=\dfrac{y}{20}=\dfrac{z}{25}=\dfrac{x+y+z}{12+20+25}=\dfrac{456}{57}=8\\ \Rightarrow\left\{{}\begin{matrix}x=96\\y=160\\z=200\end{matrix}\right.\)

\(b,a:b=2:3\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};b:c=4:5\Rightarrow\dfrac{b}{4}=\dfrac{c}{5};c:d=6:7\Rightarrow\dfrac{c}{6}=\dfrac{d}{7}\\ \Rightarrow\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15};\dfrac{c}{6}=\dfrac{d}{7}\\ \Rightarrow\dfrac{a}{16}=\dfrac{b}{24}=\dfrac{c}{30}=\dfrac{d}{35}=\dfrac{a+b+c+d}{16+24+30+35}=\dfrac{210}{105}=2\\ \Rightarrow\left\{{}\begin{matrix}a=32\\b=48\\c=60\\d=70\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

Lời giải:

Nếu $x+y+z=0$ thì:

$\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=0$

$\Rightarrow x=y=z=0$ (thỏa mãn)

Nếu $x+y+z\neq 0$ thì áp dụng tính chất dãy tỉ số bằng nhau:

$x+y+z=\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{x+y+z}{2(x+y+z)}=\frac{1}{2}$

Khi đó:

Từ điều kiện $\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}$

$\Rightarrow \frac{x}{x+y+z+1}=\frac{y}{x+y+z+2}=\frac{z}{x+y+z-3}$

$\Leftrightarrow \frac{x}{\frac{3}{2}}=\frac{y}{\frac{5}{2}}=\frac{z}{\frac{-5}{2}}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{\frac{3}{2}}=\frac{y}{\frac{5}{2}}=\frac{z}{\frac{-5}{2}}=\frac{x+y+z}{\frac{3}{2}+\frac{5}{2}+\frac{-5}{2}}=\frac{\frac{1}{2}}{\frac{3}{2}}=\frac{1}{3}$

$\Rightarrow x=\frac{1}{2}; y=\frac{5}{6}; z=\frac{-5}{6}$

30 tháng 8 2021

Chị ơi! Akai Haruma

15 tháng 7 2021

giúp mình dzới ạ khocroi

Khó thấy quá bạn ơi, bạn chụp lại đi

14 tháng 12 2022

Mình không nhìn thấy câu hỏi, giờ mới thấy bạn ạ

Do mở rộng cạnh của  thửa đất về cả bốn phía nên thửa đất mới sau khi mở rộng cũng là hình vuông. mỗi cạnh của thửa đất lúc sau đã tăng :

       0,5 x 2 = 1 (m)

Gọi cạnh hình vuông lúc đầu là x đk x > 0

Thì cạnh hình vuông lúc sau là : x + 1

theo bài ra ta có : (x + 1)( x + 1)  - x2 = 20

                           x2 + x + x + 1 - x2 = 20

                                              2x = 20 -1

                                                2x = 19

                                                  x = 19: 2

                                                  x = 9,5

Kết luận cạnh hình vuông lúc đầu là 9,5 m 

 

23 tháng 1 2022

Bài 1:

a, Xét ΔABC và ΔCDA có:

AB=CD(gt)

AD=BC(gt)

Chung AC

⇒ΔABC = ΔCDA (c.c.c)

b, ΔABC = ΔCDA(cma) ⇒\(\widehat{ACB}=\widehat{CAD}\) ( 2 góc tương ứng)

Mà 2 góc này ở vị trị so le trong với nhau ⇒ AD // BC

23 tháng 1 2022

Bn vẽ hình bài 1 cho mik đc ko ạ! Mik chưa hiểu rõ lắm!

Câu 4: 

Ta có: \(\left|x+2\right|\ge0\forall x\)

\(\left|2y+3\right|\ge0\forall y\)

Do đó: \(\left|x+2\right|+\left|2y+3\right|\ge0\forall x,y\)

Dấu '='xảy ra khi x=-2 và \(y=-\dfrac{3}{2}\)