K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

\(d,\left(2x-1\right)\left(x+3\right)+2x\left(2-x\right)=10-8\left(x+4\right)\\ \Leftrightarrow2x^2+6x-x-3+4x-2x^2=10-8x-32\\ \Leftrightarrow17x=19\Leftrightarrow x=\dfrac{19}{17}\)

vậy phương trình đã cho có nhiệm \(x=\dfrac{19}{17}\)

Ta có: \(\left(2x-1\right)\left(x+3\right)+2x\left(2-x\right)=10-8\left(x+4\right)\)

\(\Leftrightarrow2x^2+6x-x-3+4x-2x^2=-8x-22\)

\(\Leftrightarrow18x=-19\)

hay \(x=-\dfrac{19}{18}\)

4 tháng 7 2021

\(pt\text{⇔}\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\text{⇔}x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\\ \text{⇔}17x=17\text{⇔}x=1\)

Vậy nghiệm của phương trình : \(S=\left\{1\right\}\)

Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2=27\)

\(\Leftrightarrow17x=17\)

hay x=1

21 tháng 8 2021

Thay số vào mà nhấn máy tính:

1.= -1008

2.= -1

3.= 9

4.= \(\dfrac{-133}{64}\)

d: Ta có: \(12x^2+7x-12\)

\(=12x^2+16x-9x-12\)

\(=4x\left(3x+4\right)-3\left(3x+4\right)\)

\(=\left(3x+4\right)\left(4x-3\right)\)

e: Ta có: \(15x^2+7x-2\)

\(=15x^2+10x-3x-2\)

\(=\left(3x+2\right)\left(5x-1\right)\)

31 tháng 8 2021

Bài này dài, bn dùng pp thêm bớt rồi giải bằng hằng đẳng thức nha

31 tháng 8 2021

mk không giúp đc xlkhocroi

10 tháng 11 2021

\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)

10 tháng 11 2021

cảm ơn bạn minh nhiều nha

9 tháng 10 2021

a) \(A=x^4+4x+7=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(minA=3\Leftrightarrow x=-2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxC=7\Leftrightarrow x=2\)

d) \(D=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxD=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)