Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=-\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{2\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=-\pi+k2\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow\dfrac{3}{5}sinx-\dfrac{4}{5}cosx=1\)
Đặt \(\dfrac{3}{5}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{4}{5}=sina\)
Pt trở thành:
\(sinx.cosa-cosx.sina=1\)
\(\Leftrightarrow sin\left(x-a\right)=1\)
\(\Leftrightarrow x-a=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=a+\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow-4sinx.cosx\left(cos^2x-sin^2x\right)-\sqrt{3}cos4x+1=0\)
\(\Leftrightarrow-2sin2x.cos2x-\sqrt{3}cos4x+1=0\)
\(\Leftrightarrow-sin2x-\sqrt{3}cos2x+1=0\)
\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)
Bài này xài L'Hopital đi, chứ tách biểu thức chắc đến sáng mai :D
\(\lim\limits_{x\rightarrow1}\dfrac{x^{2020}-2020x+2019}{\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\dfrac{2020x^{2019}-2020}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2019.2020.x^{2018}}{2}=1010.2019\)
Hàm liên tục tại \(x=1\) khi: \(m+1=1010.2019\Rightarrow m=1010.2019-1\)
Do n lẻ, đặt \(n=2m+1\)
\(\Rightarrow S=C_{2m+1}^1+C_{2m+1}^2+...+C_{2m+1}^m\)
Áp dụng đẳng thức: \(C_n^k=C_n^{n-k}\)
\(\Rightarrow S=C_{2m+1}^{2m}+C_{2m+1}^{2m-1}+...+C_{2m+1}^{m+1}\)
\(\Rightarrow2S=S+S=C_{2m+1}^1+C_{2m+1}^2+...+C_{2m+1}^{2m}\)
\(=C_{2m+1}^0+C_{2m+1}^1+...+C_{2m+1}^{2m+1}-\left(C_{2m+1}^0+C_{2m+1}^{2m+1}\right)\)
\(=2^{2m+1}-2\)
\(\Rightarrow S=2^{2m}-1\) luôn lẻ (đpcm)
1: \(y=2x+cosx\)
=>\(y'=2-sinx\)
=>\(y''=2'-\left(sinx\right)'=-cosx\)
2: \(y=sin^3x\)
=>\(y'=3\cdot sin^2x\cdot\left(sinx\right)'=3\cdot sin^2x\cdot cosx\)
=>\(y''=3\cdot\left(sin^2x\cdot cosx\right)'\)
=>\(y''=3\left[\left(sin^2x\right)'\cdot cosx+\left(sin^2x\right)\cdot\left(cosx\right)'\right]\)
=>\(y''=3\left[2\cdot sinx\cdot\left(sinx\right)'\cdot cosx+sin^2x\cdot\left(-sinx\right)\right]\)
=>\(y''=3\left[2\cdot sinx\cdot cosx\cdot sinx-sin^3x\right]\)
=>\(y''=6\cdot sin^2x\cdot cosx-3\cdot sin^3x\)
3: \(y=2\cdot sin2x-cos\left(x+\dfrac{\Omega}{3}\right)\)
=>\(y'=2\cdot\left(2x\right)'\cdot\left(cos2x\right)-\left(-1\right)\cdot\left(x+\dfrac{\Omega}{3}\right)'\cdot sin\left(x+\dfrac{\Omega}{3}\right)\)
=>\(y'=4\cdot cos2x+sin\left(x+\dfrac{\Omega}{3}\right)\)
=>\(y''=4\cdot\left(-1\right)\cdot\left(2x\right)'\cdot sin2x+\left(x+\dfrac{\Omega}{3}\right)'\cdot cos\left(x+\dfrac{\Omega}{3}\right)\)
=>\(y''=-8\cdot sin2x+cos\left(x+\dfrac{\Omega}{3}\right)\)
4: \(y=\sqrt{x^2+1}\)
=>\(y'=\dfrac{\left(x^2+1\right)'}{2\sqrt{x^2+1}}=\dfrac{2x}{2\sqrt{x^2+1}}=\dfrac{x}{\sqrt{x^2+1}}\)
=>\(y''=\dfrac{x'\cdot\sqrt{x^2+1}-x\cdot\left(\sqrt{x^2+1}\right)'}{x^2+1}\)
=>\(y''=\dfrac{\sqrt{x^2+1}-x\cdot\dfrac{x}{\sqrt{x^2+1}}}{x^2+1}\)
=>\(y''=\dfrac{x^2+1-x^2}{\sqrt{x^2+1}\cdot\left(x^2+1\right)}=\dfrac{1}{\left(x^2+1\right)\cdot\sqrt{x^2+1}}\)
5: \(y=x\cdot cosx\)
=>\(y'=x'\cdot cosx+x\cdot\left(cosx\right)'=cosx-sinx\cdot x\)
=>\(y''=\left(cosx\right)'-\left(sinx\cdot x\right)'\)
=>\(y''=-sinx-\left[\left(sinx\right)'\cdot x+sinx\cdot x'\right]\)
=>\(y''=-sinx-cosx\cdot x-sinx\)
=>\(y''=-2\cdot sinx-cosx\cdot x\)
6: \(y=\dfrac{x+2}{x-3}\)
=>\(y'=\dfrac{\left(x+2\right)'\left(x-3\right)-\left(x+2\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
=>\(y''=\dfrac{x-3-x-2}{\left(x-3\right)^2}=\dfrac{-5}{\left(x-3\right)^2}\)
=>\(y''=\dfrac{\left(-5\right)'\cdot\left(x-3\right)^2-\left(-5\right)\cdot\left[\left(x-3\right)^2\right]'}{\left(x-3\right)^4}\)
=>\(y''=\dfrac{5\cdot\left(x^2-6x+9\right)'}{\left(x-3\right)^4}\)
=>\(y''=\dfrac{5\left(2x-6\right)}{\left(x-3\right)^4}=\dfrac{10}{\left(x-3\right)^3}\)