Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.
a. Em tự giải
b.
\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)
Để \(x+y=7\Rightarrow m+1+2m-3=7\)
\(\Rightarrow3m=9\Rightarrow m=3\)
2.
a. Em tự giải
b.
Phương trình có 2 nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
Ta có:
\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)
\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)
\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)
Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)
\(\Rightarrow P\ge40\)
Vậy \(P_{min}=40\) khi \(m=-3\)
(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

Bài 2:
Gọi vận tốc lúc đi là \(v\) (km/h), vận tốc lúc về là \(1,2 v\).
Quãng đường mỗi lượt là 120 km.
– Thời gian đi: \(\frac{120}{v}\)
– Thời gian về: \(\frac{120}{1,2 v} = \frac{100}{v}\)
Tổng thời gian đi và về bằng 4,4 giờ nên:
\(\frac{120}{v}+\frac{100}{v}=4,4\Rightarrow\frac{220}{v}=4,4\Rightarrow v=\frac{220}{4,4}=50(\text{km}/\text{h})\)
=> Vậy vận tốc lúc đi là 50 km/h, vận tốc lúc về là 60 km/h.
Bài 1b:
\(\frac{2}{3 x - 1} + \frac{1}{x} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} (Đ\text{KX}Đ:\&\text{nbsp}; x \neq 0 , \textrm{ }\textrm{ } 3 x \neq 1 )\)
Quy đồng:
\(\frac{2 x + \left(\right. 3 x - 1 \left.\right)}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow \frac{5 x - 1}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow 5 x - 1 = 4 \Rightarrow 5 x = 5 \Rightarrow x = 1\)
Kiểm tra ĐKXĐ: \(x = 1\) thỏa mãn.
=> Vậy nghiệm của phương trình là \(x = 1\).

Bài 4:
a: ΔCAB vuông tại C
=>\(\hat{CAB}+\hat{CBA}=90^0\)
=>\(\hat{CBA}=90^0-70^0=20^0\)
Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)
=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=AB^2-CA^2\)
=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)
b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)
Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)
Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)
Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)
\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)
Bài 5:
Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B
nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)
=>\(\hat{BMA}=39^0-18^0=21^0\)
Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)
=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)
=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)
Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)
=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)
=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)
Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

Bài 1:
a: \(A=\sqrt{6+2\sqrt5}-\sqrt{6-2\sqrt5}\)
\(=\sqrt{\left(\sqrt5+1\right)^2}-\sqrt{\left(\sqrt5-1\right)^2}\)
\(=\sqrt5+1-\left(\sqrt5-1\right)=\sqrt5+1-\sqrt5+1=2\)
b: \(B=a+1-\sqrt{a^2-2a+1}\)
\(=a+1-\sqrt{\left(a-1\right)^2}\)
=a+1-|a-1|
=a+1-(1-a)(Vì a<1)
=a+1-1+a=2a
Bài 2:
a: \(2x^2-8x+33\)
\(=2x^2-8x+8+25=2\left(x^2-4x+4\right)+25=2\left(x-2\right)^2+25\ge25\forall x\)
=>\(\sqrt{2x^2-8x+33}\ge\sqrt{25}=5\forall x\)
=>\(A=\sqrt{2x^2-8x+33}+3\ge5+3=8\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=\sqrt{x^2-8x+18}-1\)
\(=\sqrt{x^2-8x+16+2}-1\)
\(=\sqrt{\left(x-4\right)^2+2}-1\ge\sqrt2-1\forall x\)
Dấu '=' xảy ra khi x-4=0
=>x=4
c: \(C=\sqrt{x^2+y^2-2xy+2x-2y+10}+2y^2-8y+2020\)
\(=\sqrt{\left(x-y\right)^2+2\left(x-y\right)+1+9}+2y^2-8y+8+2012\)
\(=\sqrt{\left(x-y+1\right)^2+9}+2\left(y-2\right)^2+2012\ge2012+3=2015\forall x,y\)
Dấu '=' xảy ra khi y-2=0 và x-y+1=0
=>y=2 và x=y-1=2-1=1

Bài 2: Để hệ có nghiệm duy nhất thì \(\frac{1}{a}<>\frac{a}{1}\)
=>\(a^2<>1\)
=>a∉{1;-1](1)
\(\begin{cases}ax+y=3a\\ x+ay=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x+a\left(3a-ax\right)=2a+1\end{cases}\)
=>\(\begin{cases}y=3a-a\cdot x\\ x+3a^2-a^2\cdot x=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x\left(1-a^2\right)=2a+1-3a^2\end{cases}\)
=>\(\begin{cases}x=\frac{-3a^2+2a+1}{1-a^2}=\frac{3a^2-2a-1}{a^2-1}=\frac{\left(a-1\right)\left(3a+1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{3a+1}{a+1}\\ y=3a-a\cdot\frac{3a+1}{a+1}=\frac{3a^2+3a-3a^2-a}{a+1}=\frac{2a}{a+1}\end{cases}\)
Để x,y nguyên thì \(\begin{cases}3a+1\vdots a+1\\ 2a\vdots a+1\end{cases}\Rightarrow\begin{cases}3a+3-2\vdots a+1\\ 2a+2-2\vdots a+1\end{cases}\)
=>-2⋮a+1
=>a+1∈{1;-1;2;-2}
=>a∈{0;-2;1;-3}
Kết hợp (1), ta có: a∈{0;-2;-3}
Bài 3:
ĐKXĐ: x>=y
\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \frac12\left(\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}\right)=3\end{cases}\)
=>\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}=10\\ \sqrt{\frac{x-y}{3}}=4\end{cases}\)
=>\(\begin{cases}\frac{x+y}{2}=100\\ \frac{x-y}{3}=16\end{cases}\Rightarrow\begin{cases}x+y=200\\ x-y=48\end{cases}\Rightarrow\begin{cases}x=\frac{200+48}{2}=\frac{248}{2}=124\\ y=200-124=76\end{cases}\) (nhận)

Đáp án b
Các hình màu xanh là phản chiếu của các hình máu cam trong gương.
Nhìn sơ sơ đoán là chọn B
Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh

Bài 3:
a: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét ΔBOD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBOD cân tại B
=>BO=BD
ma BO=OD
nên BO=BD=OD
=>ΔBOD đều
=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>\(\hat{BAD}+\hat{BDA}=90^0\)
=>\(\hat{BAD}=90^0-60^0=30^0\)
Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
=>AB=AC
ΔAIB=ΔAIC
=>\(\hat{IAB}=\hat{IAC}\)
=>AI là phân giác của góc BAC
=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)
nên ΔABC đều
b: ΔOBD đều
=>BD=OB=R
ΔABD vuông tại B
=>\(BA^2+BD^2=AD^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt3\)
=>\(BA=AC=BC=R\sqrt3\)
Câu II:
a: \(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{4\sqrt{x}}{x-1}\right):\left(\dfrac{x+\sqrt{x}+5}{x-1}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+5-\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+4}\)
\(=\dfrac{8\sqrt{x}}{x+4}\)
Câu IV
3: xy-x-y=2
=>xy-x-y+1=3
=>x(y-1)-(y-1)=3
=>(x-1)(y-1)=3
=>\(\left(x-1\right)\cdot\left(y-1\right)=1\cdot3=3\cdot1=\left(-1\right)\cdot\left(-3\right)=\left(-3\right)\cdot\left(-1\right)\)
=>\(\left(x-1;y-1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;4\right);\left(4;2\right);\left(0;-2\right);\left(-2;0\right)\right\}\)
2:
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-4\right)+0\cdot\left(m-3\right)-1\right|}{\sqrt{\left(m-4\right)^2+\left(m-3\right)^2}}\)
\(=\dfrac{1}{\sqrt{2m^2-14m+25}}\)
Để d(O;(d)) lớn nhất thì \(2m^2-14m+25\) nhỏ nhất
\(2m^2-14m+25\)=\(2\left(m^2-7m+12,5\right)\)
\(=2\left(m^2-2\cdot m\cdot\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{1}{4}\right)\)
\(=2\left(m-\dfrac{7}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu '=' xảy ra khi m=7/2
Vậy: m=7/2