Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: PTHĐGĐ là:
x^2-x-2=0
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
=>y=4 hoặc y=1
c: PTHĐGĐ là:
x^2-2x+m=0
Để (P) cắt (d1) tại hai điểm nằm về hai phía của trục tung thì m<0
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
Lời giải:
PT hoành độ giao điểm: $mx^2=x-2$
$\Leftrightarrow mx^2-x+2=0(*)$
Để 2 đths cắt nhau tại 2 điểm phân biệt thì pt $(*)$ phải có 2 nghiệm phân biệt
Điều này xảy ra khi \(\left\{\begin{matrix} m\neq 0\\ \Delta=1-8m>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m< \frac{1}{8}\end{matrix}\right.(I)\)
Hoành độ giao điểm khi đó là 2 nghiệm $x_1,x_2$ của pt $(*)$
Áp dụng định lý Viet: $x_1+x_2=\frac{1}{m}; x_1x_2=\frac{2}{m}$
Để 2 điểm phân biệt nằm ở 2 phía của trục tung thì $x_1,x_2$ trái dấu
Tức là $x_1x_2<0\Leftrightarrow\frac{2}{m}<0$
$\Leftrightarrow m<0$
Kết hợp với $(I)$ suy ra $m<0$
\(Bước 1\) Lập phương trình hoành độ
Hoành độ giao điểm là nghiệm của pt
\(x-2=mx^2\\ \Leftrightarrow-mx^2+x-2=0\)
\(Bước2\) Để hai hàm số cắt nhau tại hai điểm phân biệt nằm về hai phía của trục tung => pt có 2 nghiệm trái dấu
\(a\times c< 0\\ \Leftrightarrow\left(-m\right).\left(-2\right)< 0\\ \Leftrightarrow2m< 0\\ \Leftrightarrow m< 0\\ =>B\)
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)
Chắc đề là \(y=x^2\) chứ ko phải \(y=2^2\)
Phương trình hoành độ giao điểm: \(x^2-3x-m=0\) (1)
\(\Delta=9+4m>0\Rightarrow m>-\frac{9}{4}\)
Để d cắt (P) tại 2 điểm nằm về 2 phía trục tung \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow-m< 0\Rightarrow m>0\)