Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\left(x^3\right)'-\left(4x^2\right)'+\left(1\right)'=3x^2-8x\)
Hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 1 là \(y'\left(1\right)\)
\(y'\left(1\right)=3.1^2-8.1=-5\)
đặt x^2+ax+b= (x-1)(x-m)
x^2+ax+b/x^2-1 = x-m/x+1
lim x-m/x+1=-1/2 suy ra 1-m/2=-1/2 nên m = 3
x^2+ax+b= (x-1)(x-3)=x^2-4x+3 suy ra a=-4, b=3
Đường kính khối cầu cuối cùng : 100cm
Chiều cao tối đa mô hình đạt được:
\(S=\dfrac{u_1}{1-q}=\dfrac{100}{1-\dfrac{1}{2}}=200\left(cm\right)\)
\(\lim\dfrac{3.2^{n+1}-2.3^n}{4+3^n}=\lim\dfrac{6.\left(\dfrac{2}{3}\right)^n-2}{4.\left(\dfrac{1}{3}\right)^n+1}=\dfrac{0-2}{0+1}=-2\)
7.
\(\lim\left(3.4^n-5^n\right)=\lim5^n\left(3.\left(\dfrac{4}{5}\right)^n-1\right)=+\infty.\left(-1\right)=-\infty\)
8.
\(\lim\dfrac{n^2+n-1}{3n+2}=\lim\dfrac{n^2\left(1+\dfrac{1}{n}-\dfrac{1}{n^2}\right)}{n\left(3+\dfrac{2}{n}\right)}=\lim\dfrac{n\left(1+\dfrac{1}{n}-\dfrac{1}{n^2}\right)}{3+\dfrac{2}{n}}=\dfrac{+\infty}{3}=+\infty\)
A là khẳng định sai
Lăng trụ có đáy là đa giác đều chưa chắc là 1 lăng trụ đều
Để 1 lăng trụ là đều thì nó cần 2 yếu tố: đó là lăng trụ đứng, và đáy là đa giác đều
MN là đường trung bình tam giác SAB \(\Rightarrow\) MN song song và bằng 1 nửa AB
Gọi P là trung điểm AD \(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow P\in\left(MNQ\right)\)
\(\Rightarrow\) MNQP là thiết diện của chóp và (MNQ)
Do MN song song PQ \(\Rightarrow\) MNQP là hình thang
Lại có M, P là trung điểm SA, AD \(\Rightarrow MP=\dfrac{1}{2}SD\)
Tương tự \(NQ=\dfrac{1}{2}SC\Rightarrow MP=NQ=\dfrac{b\sqrt{3}}{2}\)
\(\Rightarrow\) Thiết diện là hình thang cân
\(PQ=AB=a\) ; \(MN=\dfrac{1}{2}PQ=\dfrac{a}{2}\)
Kẻ \(MH\perp PQ\Rightarrow PH=\dfrac{PQ-MN}{2}=\dfrac{a}{4}\)
\(\Rightarrow MH=\sqrt{MP^2-PH^2}=\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)
\(S=\dfrac{1}{2}\left(MN+PQ\right).MH=\dfrac{3a}{4}.\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)
5.
\(AA'\perp\left(A'B'C'D'\right)\) theo t/c lập phương
\(\Rightarrow AA'\perp B'C'\Rightarrow\) góc giữa 2 đường thẳng bằng 90 độ
6.
\(y'=\left(x.cosx\right)'=x'.cosx+\left(cosx\right)'.x=cosx-x.sinx\)
7.
\(y'=-3x^2-5\)
\(y''=-6x\)
8.
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+3x-2\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{3}{x}-\dfrac{2}{x^3}\right)=+\infty.1=+\infty\)