Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow AB=12.5\left(cm\right)\)
\(\Leftrightarrow AC=12.5\sqrt{3}\left(cm\right)\)
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM⊥AB
Bài 3.
a. Ta có: \(CK=BK\left(gt\right)\Rightarrow OK\perp BC\)
Ta có: \(\widehat{OIC}=90^o\)
\(\widehat{OKC}=90^o\)
\(\Rightarrow\widehat{OIC}+\widehat{OKC}=90^o+90^o=180^o\)
`=>` Tứ giác CIOK nội tiếp đường tròn
b. Xét \(\Delta AID\) và \(\Delta CIB\), có:
\(\widehat{AID}=\widehat{CIB}=90^o\left(gt\right)\)
\(\widehat{ADI}=\widehat{CBI}\) ( cùng chắn \(\stackrel\frown{AC}\) )
Vậy \(\Delta AID\sim\Delta CIB\) ( g.g)
\(\Rightarrow\dfrac{IA}{IC}=\dfrac{ID}{IB}\)
\(\Leftrightarrow IC.ID=IA.IB\)
c. Kẻ \(DM\perp AC\)
Ta có: \(\widehat{ACB}=90^o\) ( góc nt chắn nửa đtròn )
`->` Tứ giác DMCK là hình chữ nhật
\(\rightarrow DK\perp BC\)
Mà \(OK\perp BC\)
\(\Rightarrow\) 3 điểm D,O,K thẳng hàng
1.2
Đề câu này bị lỗi đoạn cuối, chỗ nằm giữa \(-3x+...+2014\) là gì ấy nhỉ? \(2^2\) đúng không?
Đây là giải theo cách dịch đề bài:
\(A=5x^5-15x^4+14x^3-12x^2-3x+2^2+2014\)
Khi đó:
\(x=\sqrt[3]{2}+1\Rightarrow x-1=\sqrt[3]{2}\)
\(\Rightarrow\left(x-1\right)^3=2\)
\(\Rightarrow x^3-3x^2+3x-1=2\)
\(\Rightarrow x^3-3x^2+3x-3=0\)
Ta có:
\(A=5x^2\left(x^3-3x^2+3x-3\right)-x^3+3x^2-3x+4+2014\)
\(=5x^2.0-\left(x^3-3x^2+3x-3\right)+2015\)
\(=-0+2015=2015\)
Còn nếu đề bài là:
\(A=\left(5x^5-15x^4+14x^3-12x^2-3x+2\right)^2+2014\)
Thì kết quả là: \(A=1+2014=2015\)
2.3
Lại 1 câu đề lỗi nữa, biểu thức của pt là:
\(x^2+\left(2m-2\right)x-m^2=0\)
hay \(x^2+2m-2x-m^2=0\)?
Người đánh đề bài này rất ẩu tả, vô trách nhiệm
Coi như đề bài là: \(x^2+\left(2m-2\right)x-m^2=0\)
Ta có:
\(\Delta'=\left(m-1\right)^2+m^2=\dfrac{1}{2}\left(2m-1\right)^2+\dfrac{1}{2}>0\) ; \(\forall m\)
Pt luôn có 2 nghiệm với mọi m
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m^2\end{matrix}\right.\)
\(\left|x_1-x_2\right|=6\Leftrightarrow\left(x_1-x_2\right)^2=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=36\)
\(\Leftrightarrow\left(2m-2\right)^2+4m^2=36\)
\(\Leftrightarrow m^2-m-4=0\Rightarrow m=\dfrac{1\pm\sqrt{17}}{2}\)
a: Δ=(m-2)^2-4(m-4)
=m^2-4m+4-4m+16
=m^2-8m+20
=m^2-8m+16+4
=(m-2)^2+4>=4>0
=>Phương trình luôn có 2 nghiệm pb
b: x1^2+x2^2
=(x1+x2)^2-2x1x2
=(m-2)^2-2(m-4)
=m^2-4m+4-2m+8
=m^2-6m+12
=(m-3)^2+3>=3
Dấu = xảy ra khi m=3
a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
b: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) co
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
CD=CM+MD=CA+DB
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: AC*BD=CM*MD=OM^2=R^2
\(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}\)
=>\(2R^2-AB^2=2\cdot R^2\cdot\dfrac{\sqrt{3}}{2}=R^2\cdot\sqrt{3}\)
=>\(AB^2=R^2\cdot\left(2-\sqrt{3}\right)\)
=>\(AB=R\sqrt{2-\sqrt{3}}=\dfrac{R}{\sqrt{2}}\cdot\left(\sqrt{3}-1\right)\)
\(AC=\sqrt{R^2+R^2}=R\sqrt{2}\)
góc OBA=(180-30)/2=75 độ
góc BOC=90+30=120 độ
góc OCA=45 độ
=>góc BAC=360-120-75-45=240-120=120 độ
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{\dfrac{R^2}{2}\cdot\left(4-2\sqrt{3}\right)+2R^2-BC^2}{2\cdot\dfrac{R}{\sqrt{2}}\cdot\left(\sqrt{3}-1\right)\cdot R\sqrt{2}}=\dfrac{-1}{2}\)
=>\(R^2\left(2-\sqrt{3}\right)+2R^2-BC^2=-\dfrac{R}{\sqrt{2}}\cdot\left(\sqrt{3}-1\right)\cdot R\sqrt{2}\)
\(\Leftrightarrow R^2\left(4-\sqrt{3}\right)-BC^2=-2R^2\left(\sqrt{3}-1\right)\)
\(\Leftrightarrow R^2\left(4-\sqrt{3}+2\sqrt{3}-2\right)-BC^2=0\)
=>\(BC^2=R^2\cdot\left(2+\sqrt{3}\right)\)
=>\(BC=R\sqrt{2+\sqrt{3}}\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot sin120\cdot\dfrac{R}{\sqrt{2}}\left(\sqrt{3}-1\right)\cdot R\sqrt{2}\)
\(=\dfrac{1}{2}\cdot R^2\cdot\dfrac{\sqrt{3}}{2}\cdot\left(\sqrt{3}-1\right)=R^2\cdot\dfrac{3-\sqrt{3}}{4}\)
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
=>ΔAMB vuông tại M
=>AM vuông góc MB
=>AM vuông góc DC tại K
M là điểm chính giữa của cung AC
nên MA=MC
mà OA=OC
nen OM là trung trực của AC
=>OM vuông góc AC
Xét tứ giác CHMK có
góc CHM+góc CKM=180 độ
=>CHMK là tứ giác nội tiếp
b: Xét tứ giác DMBC có
DC//BM
DM//CB
=>DMBC là hình bình hành
=>DC=MB; DM=BC
Câu 3:
b, PT hoành độ giao điểm (d1) và (d2) là
\(2x+1=\dfrac{1}{3}x\Leftrightarrow\dfrac{5}{3}x=-1\Leftrightarrow x=-\dfrac{3}{5}\Leftrightarrow y=-\dfrac{3}{5}\cdot\dfrac{1}{3}=-\dfrac{1}{5}\\ \Leftrightarrow A\left(-\dfrac{3}{5};-\dfrac{1}{5}\right)\)
Vậy \(A\left(-\dfrac{3}{5};-\dfrac{1}{5}\right)\) là giao điểm của 2 đths
Bài 5:
Gọi chân đường cao từ A đến BC là H
Ta có \(OA=CH=1,1\left(m\right);AH=1,6\left(m\right)\)
Áp dụng HTL: \(BH=\dfrac{AH^2}{CH}=\dfrac{128}{55}\left(m\right)\)
Do đó chiều cao tường là \(BC=BH+HC=\dfrac{377}{110}\approx3,4\left(m\right)\)