K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 6 2020

Pt đường thẳng d' qua M và vuông góc d:

\(4\left(x-1\right)-3\left(y-2\right)=0\Leftrightarrow4x-3y+2=0\)

H là giao điểm d và d' nên tọa độ thỏa: \(\left\{{}\begin{matrix}3x+4y-10=0\\4x-3y+2=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{22}{25};\frac{46}{25}\right)\)

M' đối xứng M qua d \(\Leftrightarrow\) H là trung điểm MM'

\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=\frac{19}{25}\\y_{M'}=2y_H-y_M=\frac{42}{25}\end{matrix}\right.\) \(\Rightarrow M'\left(\frac{19}{25};\frac{42}{25}\right)\)

8 tháng 9 2019

Đáp án A

Ta thấy:  M ∉ d

Gọi H( a; b)  là hình chiếu của điểm M  lên đường thẳng d.

Ta có đường thẳng d có vtpt:  n → = ( 2   ; 1 )

Suy ra u → ( - 1 : 2 )  là vectơ chỉ phương của đường thẳng d.

Do đó:  H 7 5 ; 11 5

Gọi M’(x; y)  đối xứng với M qua đường thẳng d. Khi đó ; H là trung điểm của MM’

Ta có:

Vậy tọa độ điểm đối xứng với M qua d là: M ' ( 9 5 ; 12 5 )

24 tháng 5 2018

Chọn A.

Ta thấy M ∉ d.

Gọi H(a,b) là hình chiếu của điểm M lên đường thẳng d.

Ta có đường thẳng d: 2x + y - 5 = 0 nên có vtpt: Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 2)

Suy ra Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 2) là vectơ chỉ phương của đường thẳng d

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 2)

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 2)

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 2)

Do đó Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 2)

Gọi M'(x,y) đối xứng với M qua đường thẳng d. Khi đó, H là trung điểm của MM'

Ta có:

Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 2)

Vậy tọa độ điểm đối xứng với M qua d là Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 2)

NV
24 tháng 3 2023

a.

Do d vuông góc với \(\Delta\) nên d nhận \(\left(1;-3\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)-3\left(y-1\right)=0\Leftrightarrow x-3y+4=0\)

b.

\(M\in d\) mà \(MH\perp\Delta\Rightarrow\) H là giao điểm của d và \(\Delta\)

Tọa độ H là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-3y+4=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(2;2\right)\)

c.

M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm MM'

Theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=5\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(5;3\right)\)

26 tháng 3 2023

Tại sao lại đổi từ (3; 1) sang (1; -3 ) vậy ạ? Denlta có dạng pttq thì có vtpt và đường thẳng d cũng vuông góc với denlta rồi mà?

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Do MH vuông góc với đường thẳng \(\Delta \) nên ta có vecto chỉ phương của MH là: \(\overrightarrow u  = \left( {2;1} \right)\)

b) Phương trình tham số của đường thẳng MH đi qua \(M\left( { - 1;1} \right)\) có vecto chỉ phương\(\overrightarrow u  = \left( {2;1} \right)\) là: \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 1 + t\end{array} \right. \Leftrightarrow x - 2y + 3 = 0\)

c) H là giao điểm của MH và đường thẳng \(\Delta \)

Xét hệ phương trình: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\2x + y - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\) . Vậy tọa độ điểm H là: \(H\left( {1;2} \right)\)

Độ dài đoạn thẳng MH là: \(MH = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {2 - 1} \right)}^2}}  = \sqrt {{2^2} + {1^2}}  = \sqrt 5 \)

NV
24 tháng 2 2021

1. Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận (1;3) là 1 vtpt

Phương trình d':

\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)

H là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)

2.

Do A' đối xứng A qua d nên H là trung điểm AA'

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)

NV
24 tháng 2 2021

3.

Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)

Lấy điểm \(C\left(0;4\right)\) thuộc d

Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:

\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)

Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)

Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'

\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)

Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':

\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)

9 tháng 1 2016

câu a

đường thẳng (d') là đường thẳng cần tìm 

d' // d nên d' có dạng x-y +c = 0 với c khác 0 

lấy điểm bất kì thuộc (d) là O(0,0) lấy đối xứng O qua M ta được O' ( 4, 2) vậy O' thuộc (d')

42+c=0c=2(d):xy2=0


Câu b 

Viết pt đường thẳng (a) qua M và vuông góc với (d) 

(a) cắt (d) tại đâu ta được hình chiếu H của Mok