Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(z'_x=x^2-3\)
\(z'_y=1\)
\(z''_{xx}=2x\) ; \(z''_{xy}=0\) ; \(z''_{yy}=0\)
\(\Rightarrow d^2z=z''_{xx}dx^2+2z''_{xy}dxdy+z''_{yy}dy^2=2xdx^2\)
20.
\(-x^2+y=1\Rightarrow y=x^2+1\)
Thế vào hàm z ta được: \(z=\dfrac{x^3}{3}-3x+x^2+1\)
\(z'=x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-3\Rightarrow y=10\end{matrix}\right.\)
\(z''=2x+2\Rightarrow\left\{{}\begin{matrix}z''\left(1\right)=4>0\\z''\left(-3\right)=-4< 0\end{matrix}\right.\)
\(\Rightarrow M\left(-3;10\right)\) là điểm cực đại và \(N\left(1;2\right)\) là điểm cực tiểu
Ta có: \(\int\dfrac{xdx}{x^2+3}\)
Đặt \(u=x^2+3\left(u>0\right)\)
Có \(du=2xdx\)
\(\Rightarrow\int\dfrac{xdx}{x^2+3}=\)\(\int\dfrac{du}{2u}=\dfrac{1}{2}ln\left(u\right)=\dfrac{1}{2}ln\left(x^2+3\right)\)
Đáp án C đúng rồi mà nhỉ.
Dạ vâng em cảm ơn ạ chắc đề sai ạ