K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

bạn gửi hình lên đây kiểu j thế

 

23 tháng 3 2022

Có thể dùng Ctrl+C và Ctrl+V á bạn.

9 tháng 10 2021

a) \(A=x^4+4x+7=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(minA=3\Leftrightarrow x=-2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxC=7\Leftrightarrow x=2\)

d) \(D=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxD=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

19 tháng 8 2021

3x.(x-2)-x2+2x=0

⇔3x2-6x-x2+2x=0

⇔2x2-4x=0

⇔2x(x-2)=0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

vậy x=0 và x=2

19 tháng 8 2021

3x(x-2)-x^2+2x=0

<=>3x(x-2)-x(x-2)=0

<=>(3x-x)(x-2)=0

<=>2x(x-2)=0

<=>2x=0 hoặc x-2=0

<=>x=0 hoặc x=2

15 tháng 11 2021

\(d,=\dfrac{3y}{5x\left(x-y\right)}\\ e,=\dfrac{5x\left(x+2\right)\left(2-x\right)}{4\left(x-2\right)\left(x+2\right)}=\dfrac{-5x}{4}\\ f,=\dfrac{3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(6-x\right)}=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\\ g,=\dfrac{3xy\left(x-3y\right)\left(x+3y\right)}{2x^2y^2\left(x-3y\right)}=\dfrac{3\left(x+3y\right)}{2xy}\\ h,=\dfrac{45x^2y\left(x-y\right)\left(x+y\right)}{10xy\left(y-x\right)}=\dfrac{-9x\left(x+y\right)}{2}\\ i,=\dfrac{12\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)}{3\left(a+b\right)\left(a-b\right)^2}=\dfrac{4\left(a^2+ab+b^2\right)}{a-b}\)

15 tháng 11 2021

e: \(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=-\dfrac{5}{2}\)

20 tháng 11 2023

Câu 1:

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>BC=10(cm)

ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=5\left(cm\right)\)

c: Xét ΔABC vuông tại A có \(\widehat{ABC}=45^0\)

nên ΔABC vuông cân tại A

=>AB=AC

Hình chữ nhật ABDC có AB=AC

nên ABDC là hình vuông

Câu 2:

a: Xét tứ giác MEKH có

G là trung điểm chung của MK và EH

=>MEKH là hình bình hành

Hình bình hành MEKH có \(\widehat{MHK}=90^0\)

nên MEKH là hình chữ nhật

b: Xét ΔMHK có

N,G lần lượt là trung điểm của MH,MK

=>NG là đường trung bình của ΔMHK

=>NG//HK và NG=HK/2

NG//HK

\(D\in HK\)

Do đó: NG//HD

\(NG=\dfrac{HK}{2}\)

\(HD=\dfrac{HK}{2}\)

Do đó: NG=HD

Xét tứ giác NGDH có

NG//DH

NG=DH

Do đó: NGDH là hình bình hành

Hình bình hành NGDH có \(\widehat{NHD}=90^0\)

nên NGDH là hình chữ nhật

a) Xét ΔMNI vuông tại M và ΔHPI vuông tại P có

\(\widehat{MIN}=\widehat{HIP}\)(hai góc đối đỉnh)

Do đó: ΔMNI\(\sim\)ΔHPI(g-g)

b) Ta có: ΔMNI\(\sim\)ΔHPI(cmt)

nên \(\widehat{MNI}=\widehat{HPI}\)(hai góc tương ứng)

hay \(\widehat{MNI}=\widehat{MPK}\)

Xét ΔMNI vuông tại M và ΔMPK vuông tại M có

\(\widehat{MNI}=\widehat{MPK}\)(cmt)

Do đó: ΔMNI\(\sim\)ΔMPK(g-g)

Suy ra: \(\dfrac{MN}{MP}=\dfrac{MI}{MK}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{MN}{MI}=\dfrac{MP}{MK}\)

Xét ΔMNP vuông tại M và ΔMIK vuông tại M có

\(\dfrac{MN}{MI}=\dfrac{MP}{MK}\)(cmt)

Do đó: ΔMNP\(\sim\)ΔMIK(c-g-c)

Câu 19: 

\(=\dfrac{11x+x-18}{2x-3}=\dfrac{12x-18}{2x-3}=6\)

Câu 20: 

\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)

\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)

Câu 2: 

\(\Leftrightarrow\left(x+2\right)\left(10x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{3}{10}\end{matrix}\right.\)

3 tháng 5 2022

7B, 8A

 

3 tháng 5 2022

Câu 9:

a. <=> 4x= 12

<=> x=3

S={3}

b. <=> (2x-6).(x+9)=0

<=> 2x-6=0 hoặc x+9=0

<=> x= 3     hoặc x=-9

S={3;-9}

c. <=> 5x=-20

<=> x= -4

S={-4}

d. <=> (2x-6).(3x+9)=0

<=> 2x-6=0 hoặc 3x+9=0

<=> 2x=6   hoặc 3x=-9

<=> x=3     hoặc x= -3

S={3;-3}

e. th1: 2x-3= 6x+5 nếu 2x-3>0 => x>\(\dfrac{3}{2}\)

2x-3=6x+5

<=>2x-6x= 5+3

<=>-4x=8

<=> x= -2 (loại)

th2: 2x-3= -6x+5 nếu 2x-3<0 => x<\(\dfrac{3}{2}\)

2x-3=-6x+5

<=>2x+6x= 5+3

<=>8x=8

<=>x=1 (chọn)

S={1}

f. <=> -12x>6

<=> x< -\(\dfrac{1}{2}\)

S={x/x<-\(\dfrac{1}{2}\)}

g. th1: 2x+3=4x+5 nếu 2x+3>0 => x>\(\dfrac{-3}{2}\)

2x+3=4x+5

2x-4x=5-3

-2x= 2

x= -1 (chọn)

th2: 2x+3=-4x+5 nếu 2x+3<0 => x<\(\dfrac{-3}{2}\)

2x+3=-4x+5

2x+4x= 5-3

6x=2

x= \(\dfrac{1}{3}\)(loại)

S={-1}

h. <=> -2x>-6

<=> x< 3

S={x/x<3}