K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

\(a,ĐK:x\ge0;x\ne9\\ A=\dfrac{x+3\sqrt{x}-\sqrt{x}+3-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x+2\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)

\(b,x=\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\\ =3-\sqrt{5}+\sqrt{5}+1=4\\ \Leftrightarrow A=\dfrac{2-1}{2-3}=\dfrac{1}{-1}=-1\)

11 tháng 1 2021

Gọi giao điểm AE và BP là F;

Gọi giao điểm QD và AB là H; 

Gọi kéo dài AD cắt BF tại P'     

Dễ cm M là trung điểm AC

Xét \(\Delta OMC\) có QD//CM\(\Rightarrow\dfrac{OD}{OM}=\dfrac{QD}{CM}\)(hệ quả tales)

Tương tự với \(\Delta OAM\) có \(\dfrac{OD}{OM}=\dfrac{DH}{AM}\) 

\(\Rightarrow\dfrac{QD}{CM}=\dfrac{DH}{AM}\)

Mà CM=AM (vì M là tđ AC)

\(\Rightarrow QD=DH\)

Dễ cm P là trung điểm BF

Xét \(\Delta ABP'\) có DH//BP'

\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{AD}{AP'}\)(tales)

Tương tự với \(\Delta AFP'\) có \(\dfrac{QD}{FP'}=\dfrac{AD}{AP'}\)

\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{QD}{FP'}\)

Mà DH=QD (cmt) 

\(\Rightarrow BP'=FP'\)

\(\Rightarrow\)P' là trung điểm BF

\(\Rightarrow P\equiv P'\)

\(\Rightarrow A,D,P\) thẳng hàng

22 tháng 11 2021

lỗi gửi ảnh, giờ ok

 

b: \(\Leftrightarrow x\sqrt{2}=2\sqrt{2}+5\sqrt{2}=7\sqrt{2}\)

hay x=7

6 tháng 12 2021

a,

c, Gọi \(\left(D_3\right):y=ax+b\) là đt cần tìm

\(\Leftrightarrow\left\{{}\begin{matrix}a=-2;b\ne0\\3x+3=ax+b,\forall x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-2\end{matrix}\right.\)

Vậy \(\left(D_3\right):y=-2x-2\)

NV
20 tháng 7 2021

a.

ĐKXĐ: \(-3\le x\le\dfrac{3}{2}\)

Ta có:

\(4\sqrt{x+3}=2.2\sqrt{x+3}\le2^2+x+3=x+7\)

\(2\sqrt{3-2x}=2.1.\sqrt{3-2x}\le1^2+3-2x=4-2x\)

Do đó:

\(x+4\sqrt{x+3}+2\sqrt{3-2x}\le x+x+7+4-2x=11\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{3-2x}=1\end{matrix}\right.\) \(\Leftrightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

\(x^2+4x+5-2\sqrt{2x+3}=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

a: Thay x=1 và y=2 vào (d), ta được:

\(m+1-2m+3=2\)

\(\Leftrightarrow4-m=2\)

hay m=2

c: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=64-32=32\)

hay \(AB=4\sqrt{2}\left(cm\right)\)

Xét ΔABC vuông tại A có AB=AC

nên ΔBAC vuông cân tại A

Suy ra: \(\widehat{B}=\widehat{C}=45^0\)

20 tháng 9 2021

\(a,\) \(\left(d\right)\) đi qua \(A\left(1;2\right)\Leftrightarrow x=1;y=2\)

\(\Leftrightarrow2=m+1-2m+3\Leftrightarrow m=2\)

\(b,m=2\Leftrightarrow\left(d\right):y=3x-2\cdot2+3=3x-1\)

\(y=2\Leftrightarrow x=1\Leftrightarrow A\left(1;2\right)\\ y=5\Leftrightarrow x=2\Leftrightarrow B\left(2;5\right)\)