Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm AE và BP là F;
Gọi giao điểm QD và AB là H;
Gọi kéo dài AD cắt BF tại P'
Dễ cm M là trung điểm AC
Xét \(\Delta OMC\) có QD//CM\(\Rightarrow\dfrac{OD}{OM}=\dfrac{QD}{CM}\)(hệ quả tales)
Tương tự với \(\Delta OAM\) có \(\dfrac{OD}{OM}=\dfrac{DH}{AM}\)
\(\Rightarrow\dfrac{QD}{CM}=\dfrac{DH}{AM}\)
Mà CM=AM (vì M là tđ AC)
\(\Rightarrow QD=DH\)
Dễ cm P là trung điểm BF
Xét \(\Delta ABP'\) có DH//BP'
\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{AD}{AP'}\)(tales)
Tương tự với \(\Delta AFP'\) có \(\dfrac{QD}{FP'}=\dfrac{AD}{AP'}\)
\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{QD}{FP'}\)
Mà DH=QD (cmt)
\(\Rightarrow BP'=FP'\)
\(\Rightarrow\)P' là trung điểm BF
\(\Rightarrow P\equiv P'\)
\(\Rightarrow A,D,P\) thẳng hàng
a,
c, Gọi \(\left(D_3\right):y=ax+b\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}a=-2;b\ne0\\3x+3=ax+b,\forall x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-2\end{matrix}\right.\)
Vậy \(\left(D_3\right):y=-2x-2\)
c: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=64-32=32\)
hay \(AB=4\sqrt{2}\left(cm\right)\)
Xét ΔABC vuông tại A có AB=AC
nên ΔBAC vuông cân tại A
Suy ra: \(\widehat{B}=\widehat{C}=45^0\)
\(a,\Leftrightarrow5x-3=4\Leftrightarrow x=\dfrac{12}{5}\\ b,ĐK:x\ge0\\ PT\Leftrightarrow5\sqrt{x}+\sqrt{x}+6\sqrt{x}+6=4\sqrt{x}+30\\ \Leftrightarrow8\sqrt{x}=24\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\\ c,ĐK:x\ge-2\\ PT\Leftrightarrow2\sqrt{x+2}+9\sqrt{x+2}-15=2\sqrt{x+2}+12\\ \Leftrightarrow9\sqrt{x+2}=27\\ \Leftrightarrow\sqrt{x+2}=3\\ \Leftrightarrow x+2=9\\ \Leftrightarrow x=7\left(tm\right)\\ d,\Leftrightarrow\left|x\right|=13\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-13\end{matrix}\right.\)
a: \(\Leftrightarrow5x-3=4\)
hay \(x=\dfrac{7}{5}\)
\(a,\) \(\left(d\right)\) đi qua \(A\left(1;2\right)\Leftrightarrow x=1;y=2\)
\(\Leftrightarrow2=m+1-2m+3\Leftrightarrow m=2\)
\(b,m=2\Leftrightarrow\left(d\right):y=3x-2\cdot2+3=3x-1\)
\(y=2\Leftrightarrow x=1\Leftrightarrow A\left(1;2\right)\\ y=5\Leftrightarrow x=2\Leftrightarrow B\left(2;5\right)\)
a: ΔOCB cân tại O
mà OI là đường trung tuyến
nên OI vuông góc CB
Vì góc OIA=góc OMA=góc ONA
nên O,M,N,I,A cùng thuộc 1 đường tròn
b: Xét ΔABN và ΔANC có
góc ABN=góc ANC
góc BAN chung
=>ΔABN đồng dạng với ΔANC
=>AB/AN=AN/AC
=>AN^2=AB*(AB+BC)
=>4*(BC+4)=6^2=36
=>BC=5cm
a: Ta có: ΔOED cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)ED
Vì \(\widehat{OKA}=90^0\)(OK\(\perp\)ED)
nên K nằm trên đường tròn đường kính OA(1)
Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp đường tròn đường kính OA(2)
Từ (1) và (2) suy ra K,O,B,A,C cùng thuộc đường tròn đường kính OA
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(3)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(4)
Từ (3) và (4) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\)
mà AB=AC
nên \(AE\cdot AD=AC^2\)
c: Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=OD^2\left(5\right)\)
Xét ΔOHF vuông tại H và ΔOKA vuông tại K có
\(\widehat{HOF}\) chung
Do đó: ΔOHF đồng dạng với ΔOKA
=>\(\dfrac{OH}{OK}=\dfrac{OF}{OA}\)
=>\(OH\cdot OA=OK\cdot OF\left(6\right)\)
Từ (5) và (6) suy ra \(OK\cdot OF=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)
Xét ΔOKD và ΔODF có
\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)
\(\widehat{KOD}\) chung
Do đó: ΔOKD đồng dạng với ΔODF
=>\(\widehat{OKD}=\widehat{ODF}\)
mà \(\widehat{OKD}=90^0\)
nên \(\widehat{ODF}=90^0\)
=>FD là tiếp tuyến của (O)
\(=\sqrt{9.10}-3\sqrt{10-2.3.\sqrt{10}+9}\)
\(=3\sqrt{10}-3\sqrt{\left(\sqrt{10}-3\right)^2}\)
\(=3\sqrt{10}-3\left(\sqrt{10}-3\right)\)
\(=9\)
b: \(\Leftrightarrow x\sqrt{2}=2\sqrt{2}+5\sqrt{2}=7\sqrt{2}\)
hay x=7