Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
Đáp án A đúng
\(y'=9x^2+3>0;\forall v\in R\)
6.
Đáp án B đúng
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)
1.
\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)
\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)
Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:
\(\left|-1-\left(-m+2\right)\right|>3\)
\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)
2.
\(y'=-3x^2+6x+m-1\)
\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)
Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)
Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:
\(\left|x_1-x_2\right|>1\)
\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)
\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)
\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)
Có đúng 1 giá trị nguyên âm của m thỏa mãn
3.
\(y'=x^2+6\left(m-1\right)x+9\)
\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)
\(\left|x_1-x_2\right|=6\sqrt{3}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)
\(\Leftrightarrow36\left(m-1\right)^2-36=108\)
\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Có 1 giá trị nguyên âm của m thỏa mãn
nhờ người ta giải mà cười hihi
em thì bó tay chấm chữ com vào ăn
TXĐ: D=R
\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)
\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)
Đặt t = \(3^{x^2+x-1}\) (t>0)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)
Mình nghĩ câu nói này của Bác mang ý nghĩa: Làm việc gì cũng phải chắc chắn, có lý luận, có hiểu biết thì ta mới giải được vấn đề.
Đúng k mình nha
#Hoctot
“Lý luận như cái kim chỉ nam, nó chỉ phương hướng cho chúng ta trong công việc thực tế.
Không có lý luận thì lúng túng như nhắm mắt mà đi…
Có kinh nghiệm mà không có lý luận, cũng như một mắt sáng, một mắt mờ…
Lý luận mà không áp dụng vào thực tế là lý luận suông”.
Vai trò quan trọng như vậy, nhưng “kém lý luận” vẫn là căn bệnh đang tồn tại ở một bộ phận không nhỏ cán bộ, đảng viên.
bạn chỉ cần tách x4-1 thành (x2-1)(x2+1),rồi đặt x2=t là ok
ta có :
\(PT\Leftrightarrow\frac{2f\left(x\right)}{f^2\left(x\right)-1}=\frac{2}{x^2}\Leftrightarrow f^2\left(x\right)-x^2f\left(x\right)-1=0\Leftrightarrow\orbr{\begin{cases}f\left(x\right)=\frac{x^2+\sqrt{x^4+4}}{2}\\f\left(x\right)=\frac{x^2-\sqrt{x^4+4}}{2}\end{cases}}\)
bằng cách lập bảng biến thiên ta xác định được phương trình trên có 4 nghiệm
Câu 31 thử ĐA
Câu 33: có công thức
Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d
\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D
Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh
42.
Do mọi hình hộp đều cho kết quả như nhau nên để đơn giản, chúng ta sẽ sử dụng hình hộp chữ nhật để tính toán (với 1 dạng hộp bất kì thì cần kẻ đường cao để tính tỉ lệ, như vậy rất mất thời gian, trong khi sử dụng hộp chữ nhật thì có thể sử dụng trực tiếp cạnh để tính, gọn hơn nhiều):
Nối MN kéo dài cắt CD tại E \(\Rightarrow AM=DE=\dfrac{1}{2}CD\)
Nối PE cắt D'D tại F \(\Rightarrow\dfrac{DF}{CP}=\dfrac{DE}{CE}=\dfrac{1}{3}\Rightarrow DF=\dfrac{1}{3}CP=\dfrac{1}{6}CC'\)
\(\Rightarrow QF=\dfrac{1}{2}CC'-\dfrac{1}{6}CC'=\dfrac{1}{3}CC'\)
\(V_{MNPQ}=V_{M.PQE}-\left(V_{E.NQF}+V_{P.NQF}\right)\)
Có:
\(V_{M.PQE}=\dfrac{1}{3}AD.\dfrac{1}{2}DQ.PQ=\dfrac{1}{12}AD.D'D.CD=\dfrac{1}{12}V\)
\(V_{E.NQF}=\dfrac{1}{3}.ED.\dfrac{1}{2}ND.QF=\dfrac{1}{3}.\dfrac{1}{2}CD.\dfrac{1}{2}.\dfrac{1}{2}AD.\dfrac{1}{3}D'D=\dfrac{1}{72}V\)
\(V_{P.NQF}=\dfrac{1}{3}.PQ.\dfrac{1}{2}ND.QF=\dfrac{1}{3}CD.\dfrac{1}{2}.\dfrac{1}{2}AD.\dfrac{1}{3}D'D=\dfrac{1}{36}V\)
\(\Rightarrow V_{MNPQ}=\dfrac{1}{12}V-\left(\dfrac{1}{72}V+\dfrac{1}{36}V\right)=\dfrac{V}{24}\)
Bài này áp hệ trục tọa độ giải có lẽ sẽ ngắn hơn
43.
\(y'=2f'\left(2x+m\right)\) có cùng tính đơn điệu với hàm \(f\left(x\right)\)
Mà \(f\left(x\right)\) đồng biến trên \(\left(-1;1\right)\) và \(\left(4;+\infty\right)\)
\(\Rightarrow y=f\left(2x+m\right)\) đồng biến trên các khoảng thỏa mãn:
\(\left[{}\begin{matrix}-1\le2x+m\le1\\2x+m\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-1-m}{2}\le x\le\dfrac{1-m}{2}\\x\ge\dfrac{4-m}{2}\end{matrix}\right.\)
Hàm đồng biến trên \(\left(1;2\right)\) khi và chỉ khi:
\(\left[{}\begin{matrix}\dfrac{-1-m}{2}\le1< 2\le\dfrac{1-m}{2}\\1\ge\dfrac{4-m}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-3\\m\ge2\end{matrix}\right.\)