Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
ĐKXĐ: \(\left|x-2\right|-1\ne0\)
\(\Rightarrow\left|x-2\right|\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
\(1,x^2+9-16y^2+6x\\ =\left(x^2+6x+9\right)-\left(4y\right)^2\\ =\left(x+3\right)^2-\left(4y\right)^2\\ =\left(x-4y+3\right)\left(x+4y+3\right)\\ 2,x^2-9+y^2+2xy\\ =\left(x^2+2xy+y^2\right)-9\\ =\left(x+y\right)^2-3^2\\ =\left(x+y-3\right)\left(x+y+3\right)\\ 3,x^2-4x+4-9y^2\\ =\left(x-2\right)^2-\left(3y\right)^2\\ =\left(x-3y-2\right)\left(x+3y-2\right)\\ 4,x^2-4xy+4y^2-81\\ =\left(x-2y\right)^2-9^2\\ =\left(x-2y-9\right)\left(x-2y+9\right)\\ 5,6x^2+6y^2-24+12xy\\ =\left(6x^2+12xy+6y^2\right)-24\\ =6\left[\left(x^2+2xy+y^2\right)-4\right]\\ =6\left[\left(x+y\right)^2-2^2\right]\\ =6\left(x+y-2\right)\left(x+y+2\right)\\ 6,9x^2-6x+1-25\\ =\left(3x-1\right)^2-5^2\\ =\left(3x-1-5\right)\left(3x-1+5\right)\\ =\left(3x-6\right)\left(3x+4\right)\)
7: \(x^2+4x+4-49y^2\)
\(=\left(x^2+4x+4\right)-49y^2\)
\(=\left(x+2\right)^2-49y^2\)
=(x+2+7y)(x+2-7y)
8: \(a^3+9a-ab^2-6a^2\)
\(=a\left(a^2-6a+9-b^2\right)\)
\(=a\left[\left(a-3\right)^2-b^2\right]\)
\(=a\left(a-3-b\right)\left(a-3+b\right)\)
9: \(8x^2-16x+8-32y^2\)
\(=8\left(x^2-2x+1-4y^2\right)\)
\(=8\left[\left(x-1\right)^2-\left(2y\right)^2\right]\)
=8(x-1-2y)(x-1+2y)
10: \(4x^2-4x+1-81a^2\)
\(=\left(4x^2-4x+1\right)-81a^2\)
\(=\left(2x-1\right)^2-\left(9a\right)^2\)
=(2x-1-9a)(2x-1+9a)
11: \(x^2-6xy+9y^2-121\)
\(=\left(x^2-6xy+9y^2\right)-121\)
\(=\left(x-3y\right)^2-11^2=\left(x-3y-11\right)\left(x-3y+11\right)\)
12: \(12x^2-24x+12-3y^2\)
\(=3\left(4x^2-8x+4-y^2\right)\)
\(=3\left[\left(2x-2\right)^2-y^2\right]=3\left(2x-2-y\right)\left(2x-2+y\right)\)