Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5:
a: Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hbh
=>góc ABK=80 độ
b: Xét ΔABK và ΔDAE có
AB=DA
góc ABK=góc DAE
BK=AE
=>ΔABK=ΔDAE
a.
\(A=\left(15x^2y^3-12x^2y^3\right)+\left(7x^2-12x^2\right)+\left(11x^3y^2-8x^3y^2\right)\)
\(=12x^2y^3-5x^2+3x^3y^2\)
Đa thức A có bậc 5
b.
\(A=\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)
\(=\dfrac{5}{2}x^5y+\dfrac{7}{3}xy^4-\dfrac{1}{4}x^2y^3\)
Đa thức A có bậc 6
c.
\(A=\left(4x^5-6x^5\right)+\left(-7y^2-2y^2\right)-2xy+\left(3x+x\right)+\left(5y-\dfrac{1}{5}y\right)+6+\dfrac{1}{4}\)
\(=-2x^5-9y^2-2xy+4x+\dfrac{24}{5}y+\dfrac{25}{4}\)
Đa thức A có bậc 5
5:
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
AB=AC
góc A chung
=>ΔAEB=ΔAFC
b: AF=AE
=>BF=CE
Xét ΔAFI vuông tại F và ΔAEI vuông tại E có
AI chung
AF=AE
=>ΔAFI=ΔAEI
=>góc FAI=góc EAI
=>AI là phân giác của góc BAC
d: AE=căn 10^2-6^2=8cm
6:
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
mà 8<9
nên \(2^{225}< 3^{150}\)
4: \(\left|5x+3\right|>=0\forall x\)
=>\(-\left|5x+3\right|< =0\forall x\)
=>\(-\left|5x+3\right|+5< =5\forall x\)
Dấu = xảy ra khi 5x+3=0
=>x=-3/5
1:
\(\left(2x+1\right)^4>=0\)
=>\(\left(2x+1\right)^4+2>=2\)
=>\(M=\dfrac{3}{\left(2x+1\right)^4+2}< =\dfrac{3}{2}\)
Dấu = xảy ra khi 2x+1=0
=>x=-1/2
Bài 13:
góc A=180-80-30=70 độ
=>góc BAD=góc CAD=70/2=35 độ
góc ADC=80+35=115 độ
góc ADB=180-115=65 độ
Bài 14:
Xét ΔABC vuông tại A
-> \(\widehat{B}\)\(+ \widehat{C}=90^o\)
Mà \(\widehat{B}=\widehat{C}\)
=> \(2\widehat{B}=90^o\)
=> \(\widehat{B}=45^o\)
Bài 2:
a. $x^2=12y^2+1$ lẻ nên $x$ lẻ
Ta biết một scp khi chia 8 dư $0,1,4$. Mà $x$ lẻ nên $x^2$ chia $8$ dư $1$
$\Rightarrow 12y^2+1\equiv 1\pmod 8$
$\Rightarrow 12y^2\equiv 0\pmod 8$
$\Rightarrow y^2\equiv 0\pmod 2$
$\Rightarrow y$ chẵn. Mà $y$ nguyên tố nên $y=2$.
Khi đó: $x^2=12y^2+1=12.2^2+1=49\Rightarrow x=7$ (tm)
Bài 2:
b.
$x^2=8y+1$ nên $x$ lẻ. Đặt $x=2k+1$ với $k$ tự nhiên.
Khi đó: $8y+1=x^2=(2k+1)^2=4k^2+4k+1$
$\Rightarrow 2y=k(k+1)$
Vì $(k,k+1)=1, k< k+1$ và $y$ nguyên tố nên xảy ra các TH sau:
TH1: $k=2, k+1=y\Rightarrow y=3\Rightarrow x=5$ (tm)
TH2: $k=1, k+1=2y\Rightarrow y=1$ (vô lý)
TH3: $k=y, k+1=2\Rightarrow y=1$ (vô lý)
Vậy $(x,y)=(5,3)$ là đáp án duy nhất thỏa mãn.
Bài 2:
a: \(f\left(x\right)=-9x^3-2x^2+6x-3\)
\(G\left(x\right)=9x^3-6x+53\)
b: \(H\left(x\right)=9x^3-6x+53-9x^3-2x^2+6x-3=-2x^2+50\)
c: Đặt H(x)=0
=>2x2-50=0
=>x=5 hoặc x=-5
bài 3
a)\(K\left(x\right)+L\left(x\right)=2x^4-x^3+x-3+x^2+x+1\)
\(K\left(x\right)+L\left(x\right)=2x^4-x^3+x^2+2x-2\)
b)\(K\left(x\right)-L\left(x\right)=2x^4-x^3+x-3-x^2-x-1\)
\(K\left(x\right)-L\left(x\right)=2x^4-x^3-x^2-4\)