K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)

Ta lấy vễ trên chia vế dưới

\(=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)

Ta lấy vế trên chia vế dưới

\(=2^3.3=24\)

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

30 tháng 9 2023

loading...

28 tháng 10 2023

6:

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

mà 8<9

nên \(2^{225}< 3^{150}\)

4: \(\left|5x+3\right|>=0\forall x\)

=>\(-\left|5x+3\right|< =0\forall x\)

=>\(-\left|5x+3\right|+5< =5\forall x\)

Dấu = xảy ra khi 5x+3=0

=>x=-3/5

1:

\(\left(2x+1\right)^4>=0\)

=>\(\left(2x+1\right)^4+2>=2\)

=>\(M=\dfrac{3}{\left(2x+1\right)^4+2}< =\dfrac{3}{2}\)

Dấu = xảy ra khi 2x+1=0

=>x=-1/2

Bài 13:

góc A=180-80-30=70 độ

=>góc BAD=góc CAD=70/2=35 độ

góc ADC=80+35=115 độ

góc ADB=180-115=65 độ

Bài 14: 
Xét ΔABC vuông tại A 
-> \(\widehat{B}\)\(+ \widehat{C}=90^o\)

Mà \(\widehat{B}=\widehat{C}\)
=> \(2\widehat{B}=90^o\)
=> \(\widehat{B}=45^o\)

5:

a: Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

=>ABKC là hbh

=>góc ABK=80 độ

b: Xét ΔABK và ΔDAE có

AB=DA

góc ABK=góc DAE

BK=AE

=>ΔABK=ΔDAE

 

14 tháng 6 2023

bài 4 nx đc ko ạ

 

AH
Akai Haruma
Giáo viên
25 tháng 3

Bài 2:

a. $x^2=12y^2+1$ lẻ nên $x$ lẻ 

Ta biết một scp khi chia 8 dư $0,1,4$. Mà $x$ lẻ nên $x^2$ chia $8$ dư $1$

$\Rightarrow 12y^2+1\equiv 1\pmod 8$

$\Rightarrow 12y^2\equiv 0\pmod 8$

$\Rightarrow y^2\equiv 0\pmod 2$

$\Rightarrow y$ chẵn. Mà $y$ nguyên tố nên $y=2$.

Khi đó: $x^2=12y^2+1=12.2^2+1=49\Rightarrow x=7$ (tm)

AH
Akai Haruma
Giáo viên
25 tháng 3

Bài 2:

b.

$x^2=8y+1$ nên $x$ lẻ. Đặt $x=2k+1$ với $k$ tự nhiên.

Khi đó: $8y+1=x^2=(2k+1)^2=4k^2+4k+1$

$\Rightarrow 2y=k(k+1)$

Vì $(k,k+1)=1, k< k+1$ và $y$ nguyên tố nên xảy ra các TH sau:

TH1: $k=2, k+1=y\Rightarrow y=3\Rightarrow x=5$ (tm) 

TH2: $k=1, k+1=2y\Rightarrow y=1$ (vô lý) 

TH3: $k=y, k+1=2\Rightarrow y=1$ (vô lý)

Vậy $(x,y)=(5,3)$ là đáp án duy nhất thỏa mãn.

Bài 2: 

a: \(f\left(x\right)=-9x^3-2x^2+6x-3\)

\(G\left(x\right)=9x^3-6x+53\)

b: \(H\left(x\right)=9x^3-6x+53-9x^3-2x^2+6x-3=-2x^2+50\)

c: Đặt H(x)=0

=>2x2-50=0

=>x=5 hoặc x=-5