K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
24 tháng 10 2021

\(a^2+ab+b^2=c^2+cd+d^2\)

\(\Leftrightarrow\left(a+b\right)^2-ab=\left(c+d\right)^2-cd\)

\(\Leftrightarrow\left(a+b-c-d\right)\left(a+b+c+d\right)=ab-cd\)

GIả sử \(a+b+c+d=p\)là số nguyên tố. 

Khi đó \(a+b+c\equiv-d\left(modp\right)\)

\(ab-cd\equiv0\left(modp\right)\Leftrightarrow ab+c\left(a+b+c\right)\equiv0\left(modp\right)\)

\(\Leftrightarrow\left(c+a\right)\left(c+b\right)\equiv0\left(modp\right)\)

\(\Leftrightarrow\orbr{\begin{cases}c+a⋮p\\c+b⋮p\end{cases}}\)

mà \(1< c+a,c+b< p\)do \(a,b,c,d\)nguyên dương nên mâu thuẫn. 

Do đó \(a+b+c+d\)không là số nguyên tố. 

Mà \(a+b+c+d>1\)nên \(a+b+c+d\)là hợp số. 

13 tháng 4 2022

Giusp mình với mọi người ơi!!!

 

8.31:

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

XétΔBAC có BM/BA=BN/BC

nên MN//AC

=>MN vuông góc BD

=>MN vuông góc MQ

Xét tứ giác MNPQ có

MQ//NP

MQ=NP

góc NMQ=90 độ

=>MNPQ là hình chữ nhật

=>M,N,P,Q cùng nằm trên 1 đường tròn

28 tháng 10 2021

\(BC=\sqrt{8^2+5^2}=\sqrt{89}\approx9,4\left(cm\right)\)

Bài 5: 

a: Xét ΔBEC và ΔADC có 

\(\widehat{C}\) chung

\(\widehat{EBC}=\widehat{DAC}\)

Do đó: ΔBEC\(\sim\)ΔADC

 

20 tháng 10 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-x-2}-\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x^2-x-2}=\sqrt{x-2}\\ \Leftrightarrow x^2-x-2=x-2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

20 tháng 10 2021

\(a,ĐK:x\ge2\\ PT\Leftrightarrow x^2-x-2=x-2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=2\\ b,ĐK:\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\\ PT\Leftrightarrow\sqrt{x^2-1}=x^2-1\\ \Leftrightarrow x^2-1=\left(x^2-1\right)^2\\ \Leftrightarrow\left(x^2-1\right)\left(x^2-1-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\\x=\sqrt{2}\left(tm\right)\\x=-\sqrt{2}\left(tm\right)\end{matrix}\right.\)

\(c,ĐK:\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\\ PT\Leftrightarrow\sqrt{x^2-x}=-\sqrt{x^2+x-2}\\ \Leftrightarrow x^2-x=x^2+x-2\\ \Leftrightarrow2x=2\\ \Leftrightarrow x=1\left(tm\right)\)

17 tháng 10 2021

\(3,\\ A=\dfrac{1}{x^2-4x+9}=\dfrac{1}{\left(x-2\right)^2+5}\)

Vì \(\left(x-2\right)^2+5\ge5\Leftrightarrow A\le\dfrac{1}{5}\)

\(A_{max}=\dfrac{1}{5}\Leftrightarrow x=2\)

\(B=\dfrac{1}{x^2-6x+17}=\dfrac{1}{\left(x-3\right)^2+8}\)

Vì \(\left(x-3\right)^2+8\ge8\Leftrightarrow B\le\dfrac{1}{8}\)

\(B_{max}=\dfrac{1}{8}\Leftrightarrow x=3\)

5 tháng 3 2023

a) x\(^3\)+3x\(^2\)-2x-6=0

⇔(x+3)(x+\(\sqrt{2}\))(x-\(\sqrt{2}\))

⇔x+3=0 hoặc x+\(\sqrt{2}\)=0 hoặc x-\(\sqrt{2}\)=0

⇔x=-3 hoặc x=-\(\sqrt{2}\) hoặc x=\(\sqrt{2}\)

​​​b)2x\(^3\)+7x\(^2\)+7x+2=0​

⇔(x+1)(2x+1)(x+2)=0

⇔x+1=0 hoặc2x+1=0 hoặc x+2=0

⇔x=-1 hoặcx=-\(\dfrac{1}{2}\) hoặc x=-2

c)x\(^3\)+7x\(^2\)-56x+48=0

⇔(x-1)(x-4)(x+12)=0

⇔x-1=0 hoặcx-4=0 hoặcx+12=0

⇔x =1hoặcx=4 hoặcx=-12

16 tháng 5 2023

whese

29 tháng 8 2021

a, \(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)ĐK : \(x\ge0;x\ne1\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b, \(B=\frac{3x-4}{x-2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{\sqrt{x}-1}{2-\sqrt{x}}\)ĐK : \(x>0;x\ne4\)

\(=\frac{3x-4-\left(x-4\right)-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{3x-4-x+4-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

29 tháng 8 2021

c, \(Q=\frac{3}{\sqrt{a}-3}+\frac{2}{\sqrt{a}+3}+\frac{a-5\sqrt{a}-3}{a-9}\)ĐK : \(a\ge0;a\ne9\)

\(=\frac{3\sqrt{a}+9+2\sqrt{a}-6+a-5\sqrt{a}-3}{a-9}=\frac{a}{a-9}\)

d, \(B=\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)ĐK : \(x\ge0;x\ne4\)

\(=\frac{x}{x-4}+\frac{\sqrt{x}+2}{x-4}+\frac{\sqrt{x}-2}{x-4}=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(x^2+x^4-8^2+16\)

\(=x^{2+4}-8^2+4^2\)

\(=x^6-64+16\)

\(=x^2-48\)

\(=\left(x-\sqrt{48}\right)\left(x+\sqrt{48}\right)\)