K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 9 2021

a.

\(y'=4x^3-4x=4x\left(x^2-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

Dấu y' trên trục số:

undefined

Hàm đồng biến trên các khoảng \(\left(-1;0\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)

b.

\(y'=x^2+6x-7=0\Rightarrow\left[{}\begin{matrix}x=-7\\x=1\\\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Hàm đồng biến trên các khoảng \(\left(-\infty;-7\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-7;1\right)\)

7 tháng 9 2021

cô ơi giúp em bài này đc k cô

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Lời giải:

$y=(3x+6)^5(-x+1)$

$y'=-9(3x+6)^4(2x-1)$

$y'=0\Leftrightarrow x=-2$ hoặc $x=\frac{1}{2}$

Lập BBT ta thấy hàm đồng biến trên $(-\infty; \frac{1}{2})$ và nghịch biến trên $(\frac{1}{2};+\infty)$

1 tháng 6 2021

TXĐ: D = R \ {-2}

Ta có: \(y'=\dfrac{\left(-2x+2\right)\left(x+2\right)-\left(-x^2+2x-1\right)}{\left(x+2\right)^2}=\dfrac{-x^2-4x+5}{\left(x+2\right)^2}\)

\(y'=0\Rightarrow-x^2-4x+5=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

⇒ Hàm số y đồng biến trên (-5, -2) và (-2, 1)

Hàm số y nghịch biến trên (-∞, -5) và (1, +∞)

8 tháng 9 2023

\(f\left(x\right)=x+\sqrt[]{x^2-4}\)

\(f\left(x\right)\) xác định khi và chỉ khi

\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow x\le-2\cup x\ge2\)

Tập xác định : \(D=(-\infty;-2]\cup[2;+\infty)\)

\(f'\left(x\right)=1+\dfrac{x}{\sqrt[]{x^2-4}}\)

\(f'\left(x\right)=0\)

\(\Leftrightarrow1+\dfrac{x}{\sqrt[]{x^2-4}}=0\)

\(\Leftrightarrow\dfrac{\sqrt[]{x^2-4}+x}{\sqrt[]{x^2-4}}=0\)

\(\Leftrightarrow\sqrt[]{x^2-4}+x=0\left(x< -2;x>2\right)\)

Theo bất đẳng thức Bunhiacopxki:

\(\left(1.\sqrt[]{x^2-4}+1.x\right)^2\le2\left(2x^2+4\right)=4\left(x^2+2\right)\)

\(pt\Leftrightarrow4\left(x^2+2\right)=0\left(vô.lý\right)\)

\(\Rightarrow\) phương trình vô nghiệm

8 tháng 9 2023

Tiếp tục bài giải, mình nhấn nút gửi

\(...\Rightarrow f'\left(x\right)>0,\forall x\in D\)

\(\Rightarrow f\left(x\right)\) luôn luôn tăng trên tập xác định D.

13 tháng 7 2019

Xét hàm số: y = 4 - x 2 x + 3 m

TXĐ: R \ {−3m/2}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 

    +) Nếu m < −8/3, y′ > 0 suy ra hàm số đồng biến trên các khoảng Giải sách bài tập Toán 12 | Giải sbt Toán 12

    +) Nếu m > −8/3, y′ < 0 suy ra hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

    +) Nếu m = −8/3 thì y = −1/2 khi x ≠ 4

9 tháng 6 2021

TXĐ: `D=RR`

`y'=x^3-4x`

`y'=0 <=>` \(\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

\(\begin{array}{|l|cr|} \hline x & -\infty & & -2 &&&& & 0 & &&&&2&&& & +\infty\\ \hline y' & &-& 0& & &+& &0& &&-&&0& &&+&\\ \hline\end{array}\)

Vậy hàm số đồng biến trên các khoảng: `(-2;0)` và `(2; +\infty)`

Hàm số nghịch biến trên các khoảng: `(-\infty; -2)` và `(0;2)`.

29 tháng 11 2019

a) TXĐ: [0; +∞)

y’ = 0 ⇔ x = 100

Vậy hàm số đồng biến trên khoảng (0; 100) và nghịch biến trên khoảng (100;  + ∞ )

b) TXĐ: ( - ∞ ; √6) ∪ (√6;  + ∞ )

y’ = 0 ⇔ x = 3 hoặc x = -3

Vậy hàm số đồng biến trên các khoảng ( - ∞ ; -3), (3;  + ∞ ), nghịch biến trên các khoảng (-3; −√6 − 6 ), (√6; 3).

7 tháng 9 2023

7 tháng 9 2023

\(f'\left(x\right)=2-2cos2x\)

\(f'\left(x\right)=0\Leftrightarrow x=0\)

Hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(-\infty;0\right)\)

18 tháng 5 2022

non 

18 tháng 5 2022

có cc