Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
(SAB), (SBC) vuông góc (BAC)
=>SB vuông góc (ABC)
AC vuông góc AB,SB
=>AC vuông góc (SAB)
=>AC vuông góc BH
mà SA vuông góc BH
nên BH vuông góc (SAC)
=>BH vuông góc SC
mà SC vuông góc BK
nên SC vuông góc (BHK)
c: (SH;(BHK))=góc SHK=(SA;BHK)
BC=BA/cos60=2a
SC=căn SB^2+BC^2=ăcn 5
SB^2=SK*SC
=>SK=a*căn 5/5
SA=căn SB^2+AB^2=a*căn 2
SB^2=SH*SA
=>SH=a*căn 2/2
sin SHK=căn 10/5
=>góc SHK=39 độ
1.
\(D=R\backslash\left\{\dfrac{\pi}{6}+\dfrac{k\pi}{3}\right\}\) là miền đối xứng
\(f\left(-x\right)=\left(-x^3-x\right)tan\left(-3x\right)=\left(x^3+x\right)tan3x=f\left(x\right)\)
Hàm chẵn
2.
\(D=R\)
\(f\left(-x\right)=\left(-2x+1\right)sin\left(-5x\right)=\left(2x-1\right)sin5x\ne\pm f\left(x\right)\)
Hàm không chẵn không lẻ
3.
\(D=R\backslash\left\{\dfrac{\pi}{6}+\dfrac{k\pi}{3}\right\}\) là miền đối xứng
\(f\left(-x\right)=tan\left(-3x\right).sin\left(-5x\right)=-tan3x.\left(-sin5x\right)=tan3x.sin5x=f\left(x\right)\)
Hàm chẵn
4.
\(D=R\)
\(f\left(-x\right)=sin^2\left(-2x\right)+cos\left(-10x\right)=sin^22x+cos10x=f\left(x\right)\)
Hàm chẵn
5.
\(D=R\backslash\left\{k\pi\right\}\) là miền đối xứng
\(f\left(-x\right)=\dfrac{-x}{sin\left(-x\right)}=\dfrac{-x}{-sinx}=\dfrac{x}{sinx}=f\left(x\right)\)
Hàm chẵn
Đặt \(cosx=t\left(t\in\left[-1;1\right]\right)\).
\(\Rightarrow y=f\left(t\right)=-t^2+4t\)
Phương trình đã cho có nghiệm khi:
\(minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow f\left(-1\right)\le m\le f\left(1\right)\)
\(\Leftrightarrow-5\le m\le3\)
1:
(SAB), (SBC) vuông góc (BAC)
=>SB vuông góc (ABC)
AC vuông góc AB,SB
=>AC vuông góc (SAB)
=>AC vuông góc BH
mà SA vuông góc BH
nên BH vuông góc (SAC)
=>BH vuông góc SC
mà SC vuông góc BK
nên SC vuông góc (BHK)
c: (SH;(BHK))=góc SHK=(SA;BHK)
BC=BA/cos60=2a
SC=căn SB^2+BC^2=ăcn 5
SB^2=SK*SC
=>SK=a*căn 5/5
SA=căn SB^2+AB^2=a*căn 2
SB^2=SH*SA
=>SH=a*căn 2/2
sin SHK=căn 10/5
=>góc SHK=39 độ
Câu d có thể liệt kê ra, hoặc làm như sau:
Dễ dàng nhận ra với lần đầu tiên tung ra mặt có số chấm là 1,2,5,6 thì chỉ có 1 khả năng để 2 lần cách nhau 2 chấm là 3,4,3,4
Còn với các chấm 3 và 4 xuất hiện ở lần đầu thì có 2 khả năng tung lần 2 để 2 lần gieo cách nhau 2 chấm
Như vậy n(C) = 4.1 + 2.2 = 8
3.
\(y=\dfrac{1-sin^24x}{5}=\dfrac{cos^24x}{5}\)
\(cos4x\in\left[-1;1\right]\Rightarrow cos^24x\in\left[0;1\right]\Rightarrow y\in\left[0;\dfrac{1}{5}\right]\Rightarrow\left\{{}\begin{matrix}y_{min}=0\\y_{max}=\dfrac{1}{5}\end{matrix}\right.\)
6.
\(y=sinx+cosx+2=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\)
\(sin\left(x+\dfrac{\pi}{4}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+2\in\left[-\sqrt{2}+2;\sqrt{2}+2\right]\)
\(\Rightarrow y_{min}=-\sqrt{2}+2\)
\(y_{max}=\sqrt{2}+2\)
Lời giải:
Em thay $t=20$ vô:
$h=100\cos (\frac{6}{5}\pi)+200\sin (\frac{4}{5}\pi)+400=436,7$ km
Câu 1: \(a\cdot\sqrt[3]{a}=a\cdot a^{\dfrac{1}{3}}=a^{\dfrac{4}{3}}\)
=>Chọn C
Câu 2:
ĐKXĐ: x+3>0
=>x>-3
=>Chọn C
Câu 3:
\(3^{x+2}=27\)
=>\(3^{x+2}=3^3\)
=>x+2=3
=>x=1
Câu 4:
ĐKXĐ: x>0
\(log_2^2x-5\cdot log_2x-6< =0\)
=>\(\left(log_2x-6\right)\left(log_2x+1\right)< =0\)
=>\(log_2x-6< =0\)
=>\(log_2x< =6\)
=>x<=64
=>0<x<=64
=>Chọn B
Câu 9:
\(P\left(AB\right)=0,7\cdot0,2=0,14\)
=>Chọn A
Câu 9:
\(P\left(\overline{A}\right)=1-0,4=0,6\)
\(P\left(\overline{A}B\right)=0,6\cdot0,5=0,3\)
=>Chọn B
Câu 10:
A: "Tổng số chấm trên hai con xúc sắc là 5"
=>A={(1;4);(2;3);(3;2);(4;1)}
B: "Tích số chấm trên hai con xúc sắc là 6"
=>B={(1;6);(6;1);(2;3);(3;2)}
=>\(A\cap B=\left\{\left(2;3\right);\left(3;2\right)\right\}\)
=>Chọn D
Câu 11:
A: "Tổng số chấm trên hai con xúc sắc là 7"
=>A={(1;6);(2;5);(5;2);(6;1);(3;4);(4;3)}
B: "Tích số chấm trên hai con xúc sắc là 10"
=>B={(2;5);(5;2)}
=>\(A\cap B=\left\{\left(2;5\right);\left(5;2\right)\right\}\)
=>Chọn A
Câu 11:
\(f\left(x\right)=2x+cosx\)
=>\(f'\left(x\right)=2-sinx\)
\(-1< =-sinx< =1\)
=>\(-1+2< =f\left(x\right)< =1+2\)
=>1<=f(x)<=3
=>Chọn B
Câu 12:
\(y=x^3-3x^2+2\)
=>\(y'=3x^2-3\cdot2x=3x^2-6x\)
\(y'\left(-1\right)=3\cdot\left(-1\right)^2-6\cdot\left(-1\right)=3+6=9\)
\(y\left(-1\right)=\left(-1\right)^3-3\cdot\left(-1\right)^2+2=-1+2-3=-4+2=-2\)
Phương trình tiếp tuyến tại x=-1 là:
y-y(-1)=y'(-1)(x+1)
=>y-(-2)=9(x+1)
=>y+2=9x+9
=>y=9x+7
=>Chọn B