K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2022

38.

\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)

\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)

\(y\left(2\right)=-\dfrac{11}{3}\)

Phương trình d:

\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)

Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn

NV
17 tháng 4 2022

39.

Gọi E là trung điểm AB, F là trung điểm CD

Từ E kẻ EH vuông góc SF (H thuộc SF)

Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)

\(\Rightarrow SE\perp CD\)

\(EF||AD\Rightarrow EF\perp CD\)

\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)

\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)

Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)

\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)

Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)

NV
14 tháng 4 2022

23.

Gọi M là trung điểm BC

Trong mp (SAM), từ A kẻ \(AH\perp SM\) (1)

Ta có: \(AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)

Lại có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp SH\)

(1);(2) \(\Rightarrow SH\perp\left(SBC\right)\)

\(\Rightarrow SH=d\left(A;\left(SBC\right)\right)\)

\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Hệ thức lượng trong tam giác vuông SAM:

\(AH=\dfrac{AM.SA}{\sqrt{AM^2+SA^2}}=\dfrac{a\sqrt{66}}{11}\)

undefined

NV
14 tháng 4 2022

24.

Gọi D, E lần lượt là trung điểm BC, AC

\(\Rightarrow\) DE là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}DE\perp AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)

SBC đều \(\Rightarrow SD\perp BC\Rightarrow SD\perp\left(ABC\right)\)

\(\Rightarrow SD\perp AC\)

\(\Rightarrow AC\perp\left(SDE\right)\Rightarrow\widehat{SED}\) là góc giữa (SAC) và (ABC)

\(AB=BC.cos\widehat{ABC}=a.cos30^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow DE=\dfrac{1}{2}AB=\dfrac{a\sqrt{3}}{4}\)

\(SD=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(tan\varphi=tan\widehat{SED}=\dfrac{SD}{DE}=2\)

undefined

1 tháng 5 2022

Ta có : \(f\left(2\right)=2a+b-6\)

\(\lim\limits_{x\rightarrow2^+}\dfrac{x-\sqrt{x+2}}{x^2-4}=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-x-2}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{x+2}\right)}\)  

\(=\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(x+2\right)\left(x+\sqrt{x+2}\right)}=\dfrac{3}{16}\)

\(\lim\limits_{x\rightarrow2^-}x^2+ax+3b=4+2a+3b\) 

H/s liên tục tại điểm x = 2 \(\Leftrightarrow\dfrac{3}{16}=2a+3b+4=2a+b-6\)

Suy ra : \(a=\dfrac{179}{32};b=-5\) => t = a + b = 19/32 . Chọn C 

NV
5 tháng 4 2022

\(y'=\left(x^3\right)'-\left(3x\right)'+\left(4\right)'=3x^2-3\)

Hệ số góc tiếp tuyến tại điểm có hoành độ -2 là \(y'\left(-2\right)\)

\(y'\left(-2\right)=3.\left(-2\right)^2-3=9\)

NV
14 tháng 4 2022

29.

SMN cân tại S \(\Rightarrow SH\perp MN\) (trung tuyến đồng thời là đường cao trong tam giác cân)

Mà \(\left\{{}\begin{matrix}MN=\left(SMN\right)\cap\left(MNPQ\right)\\\left(SMN\right)\perp\left(MNPQ\right)\end{matrix}\right.\)

\(\Rightarrow SH\perp\left(MNPQ\right)\)

Hay SH là đường cao của chóp

NV
15 tháng 3 2022

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{mx^2-\left(m+3\right)x+3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(mx-3\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(mx-3\right)=m-3\)

\(f\left(1\right)=m^2-15\)

Hàm liên tục tại \(x=1\) khi:

\(m-3=m^2-15\Rightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

\(4^2+\left(-3\right)^2=25\)

15 tháng 5 2022

Hi bạn, câu 29 này mình có cái cách này dùng cho các bài lim khi rơi vào trường hợp vô định thì bạn dùng quy tắc L'Hospital làm cho nhanh với trường hợp các bài trắc nghiệm như thế này

Ở bài 29 này đang rơi vào dạng \(\dfrac{0}{0}\) nên dùng quy tắc L'Hospital được nè. Bạn làm như sau:

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x\ge-3\end{matrix}\right.\)

Bước 1: Đạo hàm tử mẫu, ta được: \(\dfrac{\dfrac{1}{2}\left(x+3\right)^{-\dfrac{1}{2}}}{1}\)

Bước 2: Thay điểm cần tính giới hạn: (x=1)

ta sẽ được \(\dfrac{1}{4}\)

Vậy \(lim_{x\rightarrow1}\dfrac{\sqrt{x+3}-2}{x-1}=\dfrac{1}{4}\)

\(\Rightarrow a=1;b=4\)

Vậy S=4a-b=0

NV
5 tháng 4 2022

\(y'=3x^2-2\)

hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)

\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)

NV
14 tháng 4 2022

14.

A là khẳng định sai, CD không vuông góc SB

(Vì nếu \(CD\perp SB\)  (1); do \(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\) (2)

(1);(2) \(\Rightarrow CD\perp\left(SAB\right)\Rightarrow CD\perp AB\) (vô lý do \(CD||AB\))