Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ a( b + c)^2(b - c) + b( c + a)^2( c - a) + c( a + b)^2( a - b)}\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(b-a\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
\(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
\(\text{Phân tích thành nhân tử}\)
\(\left(b-a\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(\text{Phân tích thành nhân tử}\)
\(\left(b-a\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
\(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)\)
\(\text{Phân tích thành nhân tử}\)
\(\left(b-a\right)\left(c^3-3abc-c+ab^2+a^2+b\right)\)
\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
\(\text{Phân tích thành nhân tử}\)
\(\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(bc+ac+ab\right)\)
\(ko?\)
\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(c-b\right)\)
\(\text{Phân tích thành nhân tử}\)
\(\left(c-a\right)\left(c^4+bc^3+ac^3+\left(-a\right)bc^2+a^2c^2+\left(-a^2\right)bc+a^3c+b^4+\left(-a^3\right)b\right)\)
a)\(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(a-c\right)\)
b)\((a+b)(a^2-b^2)+(b+c)(b^2-c^2)+(c+a)(c^2-a^2)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
c)\(a^2b^2(a-b)+b^2c^2(b-c)+c^2a^2(c-a)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+bc+ca\right)\)
d)\(a^4(b-c)+b^4(c-a)+c^4(a-b)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
Dạ e cám ơn, nhưng mà còn câu b, c, d, e ạ...