Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài V:
-ĐKXĐ: \(x\ne\pm1\).
\(\dfrac{m}{x-1}+\dfrac{x}{x+1}=\dfrac{x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{m\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow mx+m+x^2-x=x^2\)
\(\Leftrightarrow m\left(x+1\right)=x\)
\(\Leftrightarrow m=\dfrac{x}{x+1}\)
-Vì m,x nguyên:
\(\Rightarrow x⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1-1\right)⋮\left(x+1\right)\)
\(\Rightarrow-1⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{0;-2\right\}\) (nhận)
*\(x=0\Rightarrow m=\dfrac{x}{x+1}=\dfrac{0}{0+1}=0\)
\(x=-2\Rightarrow m=\dfrac{x}{x+1}=\dfrac{-2}{-2+1}=1\)
-Vậy với \(m=0\) thì \(S=\left\{0\right\}\)
với \(m=1\) thì \(S=\left\{-2\right\}\)
\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{20}+1\right)+1\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{20}+1\right)+1\)
\(A=\left(2^4-1\right)\left(2^4+1\right)....\left(2^{20}+1\right)+1\)
\(....\)
\(A=\left(2^{20}-1\right)\left(2^{20}+1\right)+1\)
\(A=2^{40}-1+1\)
\(A=2^{40}\)
a, xét tg HBA và tg ABC có:
góc BHA=goc BAC=90 độ
góc ABC_ chung
\(\Rightarrow\)tg HBA\(\sim\)tg ABC(g.g)
b, từ tg HBA\(\sim\)tg ABC(cmt) => BH/AB=AB/BC\(\Rightarrow\) AB2=BH.BC
mà AB=BE(gt) \(\Rightarrow\)BE2=BH.BC
c, áp dụng định lý pytago vào tam giác ABC vuông tại A =>BC=5cm
từ tg HBA\(\sim\)tg ABC(cmt)=> AH/AC=AB/BC
=> AH/4=3/5 => ah=2,4cm
d, tg ABC có BD là tia p/g =>AD/DC=AB/BC( tính chất đường phân giác trong tam giác)
=>AD/DC=3/5 => AD/3=DC/5
áp dụng tính chất dãy tỉ sô bằng nhau ta có:
=> AD/3=DC/5= AD+DC/3+5=AC/8=4/8=1/2
từ DC/5=1/2 \(\Rightarrow\)DC=2,5cm
xét tg EDB và tg ADB có:
BD_ cạnh chung
góc ABD=gocEBD
BE=AB(gt)
\(\Rightarrow\) tg EDB = tg ADB (c.g.c)
\(\Rightarrow\)góc ABD=goc BED=90 độ
xét tg CED và tg CABcó:
góc CED=gocBAC=90 độ
góc C_ góc chung
\(\Rightarrow\) tgCED \(\sim\) tg CAB (g.g)
tỉ số đồng dạng là DC/BC=2,5/5=1/2
\(\Rightarrow\)SCED/SABC =(1/2)2 =1/4
Bài 4 :
a) Xét \(\Delta\) ABD và \(\Delta\) ACE, ta có :
\(\widehat{BAD}\) = \(\widehat{CAE}\) (AD là đường phân giác)
\(\widehat{ABD}\) = \(\widehat{ACE}\) (gt)
\(\Rightarrow\) \(\Delta\) ABD \(\sim\) \(\Delta\) ACE (g.g)
b) \(\Delta\) ABD \(\sim\) \(\Delta\) ACE (câu a) \(\Rightarrow\) \(\widehat{ADB}\) = \(\widehat{AEC}\)
Mà \(\widehat{CED}\) = 180o - \(\widehat{CEA}\) ; \(\widehat{CDE}\) = 180o - \(\widehat{ADB}\) \(\Rightarrow\) \(\widehat{CED}\) = \(\widehat{CDE}\)
\(\Rightarrow\) \(\Delta\) CDE cân tại C
Bài 4:
b: Ta có: ΔAHC vuông tại H
mà HI là đường trung tuyến
nên IH=IC
hay ΔIHC cân tại I