Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12. \(\dfrac{4\sqrt{3}}{3}\pi\)
13. \(12\pi\)
14. \(\sqrt{6}\pi a^2\)
\(\int\limits^4_3\dfrac{dx}{x^2+x}=\int\limits^4_3\dfrac{dx}{x\left(x+1\right)}=\int\limits^4_3\left(\dfrac{1}{x}-\dfrac{1}{x+1}\right)dx=\left[lnx-ln\left(x+1\right)\right]|^4_3\)
\(=ln4-ln5-\left(ln3-ln4\right)=2ln4-ln3-ln5\)
\(=4ln2-ln3-ln5\Rightarrow a=4;b=c=-1\)
\(\Rightarrow S=2\)
- Tiệm cận đứng của đồ thị là 1 giá trị âm nên loại A và B
- Hàm đồng biến trên các khoảng xác định nên loại C
Vậy D là đáp án đúng
\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)
\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)
\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)
Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)
\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)
\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)
\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)
\(\Leftrightarrow x_2-x_1=2\)
Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)
\(\Rightarrow c=2\)
Có 1 giá trị nguyên
Xét \(I_1=\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{4}}\dfrac{f\left(tanx\right)}{cos^2x}dx=\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{4}}f\left(tanx\right)d\left(tanx\right)\)
Đặt \(tanx=t\Rightarrow t\in\left[1;\sqrt{3}\right]\Rightarrow f\left(t\right)=2t^3-t\)
\(I_1=\int\limits^{\sqrt{3}}_1f\left(t\right)dt=\int\limits^{\sqrt{3}}_1\left(2t^3-t\right)dt=3\)
Xét \(I_2=\int\limits^{\sqrt{e-1}}_0\dfrac{xf\left(ln\left(x^2+1\right)\right)}{x^2+1}dx=\dfrac{1}{2}\int\limits^{\sqrt{e-1}}_0f\left(ln\left(x^2+1\right)\right).d\left[ln\left(x^2+1\right)\right]\)
Đặt \(ln\left(x^2+1\right)=t\Rightarrow t\in\left[0;1\right]\Rightarrow f\left(t\right)=-3t+4\)
\(I_2=\dfrac{1}{2}\int\limits^1_0\left(-3t+4\right)dt=\dfrac{5}{4}\)
\(\Rightarrow I=3+\dfrac{5}{4}=\dfrac{17}{4}\Rightarrow P=21\)