Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(\dfrac{1}{x^4y^6z};\dfrac{2}{3x^2y^7z^2};\dfrac{3}{4x^5y}\)
Mẫu thức chung: \(12x^5y^7z^2\)
Quy đồng mẫu thức các phân thức ta được:
\(\dfrac{12xyz}{12x^5y^7z^2};\dfrac{8x^3}{12x^5y^7z^2};\dfrac{9y^6z^2}{12x^5y^7z^2}\)
a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]-2\left(4x^3-1\right)\)
\(=\left[\left(2x\right)^3+3^3\right]-2\left(4x^3-1\right)\)
\(=\left(8x^3+27\right)-8x^3+2\)
\(=8x^3+27-8x^3+2\)
\(=29\)
Vậy: ....
c) \(2\left(x^3+y^3\right)-3\left(x^3+y^3\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3x^2-3y^2\)
\(=2\left(x^2-xy+y^2\right)\cdot1-3x^2-3y^2\)
\(=2x^2-2xy+2y^2-3x^2-3y^2\)
\(=-x^2-2xy-y^2\)
\(=-\left(x^2+2xy+y^2\right)\)
\(=-\left(x+y\right)^2\)
\(=-\left(1\right)^2=-1\)
Vậy: ...
`@` `\text {Ans}`
`\downarrow`
`b,`
\(B=x^6 - 20x^5 - 20x^4 - 20x^3 - 20x^2 - 20x + 3\) tại `x=21`
Ta có: `20 = 21 - 1 => 20 = x-1`
Thay `20 = x-1` vào, ta có:
\(x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)
`=`\(x^6-x^6+x^5-x^5+x^4-x^4+...+x+3\)
`=`\(x+3\)
`=`\(21+3=24\)
Vậy, `B=24`
`c,`
`C=`\(x^7-26x^6+27x^5-47x^4-77x^3+50x^2+x-24\) tại `x=25`
`=`\(x^7-25x^6-x^6+25x^5+2x^5-50x^4+3x^4-75x^3-2x^3+50x^2+x-24\)
`=`\(x^6\left(x-25\right)-x^5\left(x-25\right)+2x^4\left(x-25\right)+3x^3\left(x-25\right)-2x^2\left(x-25\right)+x-24\)
`=`\(\left(x^6-x^5+2x^4+3x^3-2x^2\right)\left(x-25\right)+x-24\)
Thay `x=25` vào bt C, ta được:
\(\left(25^6-25^5+2\cdot25^4+3\cdot25^3-2\cdot25^2\right)\left(25-25\right)+25-24\)
`=`\(\left(25^6-25^5+2\cdot25^4+3\cdot25^3-2\cdot25^2\right)\cdot0+1\)
`= 0+1=1`
Vậy, `C=1.`
c: Xét ΔANB có
EM//NB
E là trung điểm của AB
=>M là trung điểm của AN
=>AM=MN
Xét ΔDMC có
F là trung điểm của CD
FN//DM
=>N là trung điểm của CM
=>CN=NM=AM
AM+MO=AO
CN+NO=CO
mà AO=CO và AM=Cn
nên MO=NO
=>O là trung điểm của MN
=>M đối xứng N qua O
\(a,\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\\ \Leftrightarrow48x^2-20x-12x+5-3x-48x^2-7+112x-81=0\\ \Leftrightarrow77x=83\\ \Leftrightarrow x=\dfrac{83}{77}\)
\(b,\left(x-4\right)\left(x-1\right)=\left(x-2\right)\left(x-3\right)\\ \Leftrightarrow x^2-4x-x+4=x^2-2x-3x+6\\ \Leftrightarrow x^2-x^2-4x-x+2x+3x=6-4\\ \Leftrightarrow0x=2\left(vô.lí\right)\)
Vậy không có x thoả mãn
c: Xét ΔPMN có PQ là đường phân giác
nên \(\dfrac{MQ}{MP}=\dfrac{NQ}{PN}\)
=>\(\dfrac{MQ}{6,2}=\dfrac{QN}{8,7}\)
mà MQ+QN=MN=12,5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MQ}{6,2}=\dfrac{QN}{8,7}=\dfrac{MQ+QN}{6,2+8,7}=\dfrac{12.5}{14.9}=\dfrac{125}{149}\)
=>\(\dfrac{x}{8,7}=\dfrac{125}{149}\)
=>\(x=\dfrac{125}{149}\cdot\dfrac{87}{10}=\dfrac{87\cdot25}{2\cdot149}=\dfrac{2175}{298}\)
d: Xét ΔBAC có BD là phân giác
nên \(\dfrac{BA}{BC}=\dfrac{AD}{DC}=\dfrac{4}{5}\)
=>\(\dfrac{BA}{4}=\dfrac{BC}{5}=k\)
=>BA=4k; BC=5k
=>x=4k; y=5k
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2-AB^2=AC^2\)
=>\(\left(5k\right)^2-\left(4k\right)^2=9^2\)
=>\(9k^2=81\)
=>\(k^2=9\)
=>k=3
=>\(x=4\cdot3=12;y=5\cdot3=15\)
e: Xét ΔBAC có BD là phân giác
nên \(\dfrac{BA}{BC}=\dfrac{AD}{DC}=\dfrac{2}{3}\)
=>\(\dfrac{BA}{2}=\dfrac{BC}{3}\)
=>\(\dfrac{BA}{4}=\dfrac{BC}{6}\)
Xét ΔCAB có CE là phân giác
nên \(\dfrac{CA}{CB}=\dfrac{AE}{EB}=\dfrac{5}{6}\)
=>\(\dfrac{CA}{5}=\dfrac{CB}{6}\)
=>\(\dfrac{BA}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}\)
mà \(BA+AC+BC=P_{ABC}\cdot2=90\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BA}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{90}{15}=6\)
=>\(AB=4\cdot6=24\left(cm\right);AC=5\cdot6=30\left(cm\right);BC=6\cdot6=36\left(cm\right)\)
b: ĐKXĐ: x<>-3
\(\dfrac{3x+x^2}{x^2+x+1}\cdot\dfrac{3x^3-3}{x+3}\)
\(=\dfrac{x\left(x+3\right)}{x^2+x+1}\cdot\dfrac{3\left(x^3-1\right)}{x+3}\)
\(=\dfrac{3x\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=3x\left(x-1\right)\)
e: ĐKXĐ: \(x\notin\left\{4;-5\right\}\)
\(\dfrac{2x+10}{x^3-64}:\dfrac{\left(x+5\right)^2}{2x-8}\)
\(=\dfrac{2\left(x+5\right)}{\left(x-4\right)\left(x^2+4x+16\right)}\cdot\dfrac{2x-8}{\left(x+5\right)^2}\)
\(=\dfrac{2\cdot2\left(x-4\right)}{\left(x-4\right)\left(x^2+4x+16\right)}=\dfrac{4}{x^2+4x+16}\)
Câu 9
a) 3(x - 2)(x + 2) < 3x² + x
⇔ 3(x² - 4) - 3x² - x < 0
⇔ 3x² - 12 - 3x² - x < 0
⇔ -x < 12
⇔ x > -12
Vậy S = {x | x > -12}
b) 6 + 2x ≥ 3 - x
⇔ 2x + x ≥ 3 - 6
⇔ 3x ≥ -3
⇔ x ≥ -1
Vậy S = {x | x ≥ -1}
c) (x + 6)/4 - (x - 2)/6 < (x + 1)/3
⇔ 3(x + 6) - 2(x - 2) < 4(x + 1)
⇔ 3x + 18 - 2x + 4 < 4x + 4
⇔ 3x - 2x - 4x < 4 - 18 - 4
⇔ -3x < -18
⇔ x > 6
Vậy S = {x | x > 6}
c: \(\dfrac{2x}{x+5}+\dfrac{10x}{x^2+5x}\)
\(=\dfrac{2x}{x+5}+\dfrac{10x}{x\left(x+5\right)}\)
\(=\dfrac{2x}{x+5}+\dfrac{10}{x+5}=\dfrac{2x+10}{x+5}=\dfrac{2\left(x+5\right)}{x+5}=2\)
d: \(\dfrac{x}{x^2-36}+\dfrac{x-6}{x^2+6x}+\dfrac{-36}{\left(x^2-6x\right)\left(x+6\right)}\)
\(=\dfrac{x}{\left(x-6\right)\left(x+6\right)}+\dfrac{x-6}{x\left(x+6\right)}+\dfrac{-36}{x\left(x-6\right)\left(x+6\right)}\)
\(=\dfrac{x^2+\left(x-6\right)^2-36}{x\left(x-6\right)\left(x+6\right)}\)
\(=\dfrac{x^2+x^2-12x+36-36}{x\left(x-6\right)\left(x+6\right)}=\dfrac{2x^2-12x}{x\left(x-6\right)\left(x+6\right)}\)
\(=\dfrac{2\left(x^2-6x\right)}{\left(x^2-6x\right)\left(x+6\right)}=\dfrac{2}{x+6}\)
Em cảm ơn nhìu ạ ❤️😍