K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: \(\Leftrightarrow\left\{{}\begin{matrix}8x-2\left|y+2\right|=6\\x+2\left|y+2\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=9\\x+2\left|y+2\right|=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y+2\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y\in\left\{-1;-3\right\}\end{matrix}\right.\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-3}=2\\\dfrac{1}{2\left|y\right|-3}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=2\\2\left|y\right|=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y\in\left\{2;-2\right\}\end{matrix}\right.\)

13 tháng 11 2021

\(26,\\ a,\sin45^0=\cos45^0< \sin50^025'< \sin57^048'=\cos32^012'< \sin72^0=\cos18^0< \sin75^0\\ b,\tan37^026'< \tan47^0< \tan58^0=\cot32^0< \tan63^0< \tan66^019'=\cot23^041'\\ 27,\\ A=\dfrac{\left(\sin^226^0+\sin^264^0\right)+2\left(\cos^215^0+\cos^275^0\right)}{\left(\sin^255^0+\cos^255^0\right)+\left(\sin^242^0+\cos^242^0\right)}-\dfrac{\tan81^0}{2\tan81^0}\\ A=\dfrac{\left(\sin^226^0+\cos^226^0\right)+2\left(\sin^215^0+\cos^215^0\right)}{1+1}-\dfrac{1}{2}\\ A=\dfrac{1+2}{2}-\dfrac{1}{2}=2-\dfrac{1}{2}=\dfrac{3}{2}\)

\(28,\\ \sin^2\alpha=1-\cos^2\alpha=1-\dfrac{1}{2}=\dfrac{1}{2}\\ \Leftrightarrow\sin\alpha=\dfrac{\sqrt{2}}{2}\)

Bài 7:

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔHAC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Ta có: \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(=2-\sqrt{3}+2+\sqrt{3}\)

=4

d: Ta có: \(\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{a-2\sqrt{ab}+b+a+2\sqrt{ab}+b}{a-b}\)

\(=\dfrac{2a+2b}{a-b}\)

26 tháng 12 2022

loading...