K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5:

a) Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(2x+1=-x+3\)

\(\Leftrightarrow2x+x=3-1\)

\(\Leftrightarrow3x=2\)

hay \(x=\dfrac{2}{3}\)

Thay \(x=\dfrac{2}{3}\) vào (d1), ta được:

\(y=2\cdot\dfrac{2}{3}+1=\dfrac{4}{3}+1=\dfrac{7}{3}\)

2) Thay \(x=\dfrac{2}{3}\) và \(y=\dfrac{7}{3}\) vào (d3), ta được:

\(\left(m-1\right)\cdot\dfrac{2}{3}+3m-2=\dfrac{7}{3}\)

\(\Leftrightarrow\dfrac{2}{3}m-\dfrac{2}{3}+3m-2=\dfrac{7}{3}\)

\(\Leftrightarrow m\cdot\dfrac{11}{3}=5\)

hay \(m=\dfrac{15}{11}\)

27 tháng 7 2021

Giúp e bài 3 vs ạ

12 tháng 10 2021

\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)

12 tháng 10 2021

C1: $\sqrt{28}=\sqrt{4.7}=2\sqrt 7$

Ta có: $3>2$

$\Leftrightarrow 3\sqrt 7>3\sqrt 7$ hay $3\sqrt 7>\sqrt{28}$

C2: $3\sqrt{7}=\sqrt{63}$

Ta có: $63>28$

$\Leftrightarrow\sqrt{63}>\sqrt{28}$ hay $3\sqrt 7>\sqrt{28}$

NV
2 tháng 4 2023

3b.

\(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\)

Pt có 2 nghiệm pb khi \(\left(m+2\right)^2>0\Rightarrow m\ne-2\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-\left(m+1\right)\end{matrix}\right.\)

\(x_1+x_2-2x_1x_2=8\)

\(\Leftrightarrow-m+2\left(m+1\right)=8\)

\(\Rightarrow m=6\) (thỏa mãn)

6.

\(M=x-\sqrt{x}+1=\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(M_{min}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)

4 tháng 4 2023

Cảm ơn nhiều ạ

23 tháng 10 2021

\(21,\\ e,PT\Leftrightarrow\left|2x-5\right|=5-2x\Leftrightarrow\left[{}\begin{matrix}2x-5=5-2x\left(x\ge\dfrac{5}{2}\right)\\5-2x=5-2x\left(x< \dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\0x=0\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x\in R\\ f,\Leftrightarrow\left|x-\dfrac{1}{4}\right|=\dfrac{1}{4}-x\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{1}{4}-x\left(x\ge\dfrac{1}{4}\right)\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\left(x< \dfrac{1}{4}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(tm\right)\\0x=0\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x\in R\)

AH
Akai Haruma
Giáo viên
12 tháng 4 2023

Bạn xem lại, làm gì có cái ảnh đề nào đâu?