Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Olm chào em. Cảm ơn em đã tin tưởng và đồng hành cùng olm trong suốt thời gian qua. Với dạng này em làm như sau nhé:
Gọi số học sinh của khối đó là \(x\) (học sinh) 0 < \(x\) < 300; \(x\) \(\in\) N
Theo bài ra ta có: ( \(x\) + 2) \(⋮\) 4; 5; 6
⇒ (\(x\) + 2) \(\in\) BC(4; 5; 6)
4 = 22; 5 = 5; 6 = 2.3 ⇒ BCNN(4; 5;6) = 22.3.5 = 60
⇒ BC(4;5;6) = {0; 60; 120; 180; 240; 300; 360; 420; ...;}
Vì 0< \(x\) < 300 ⇒0< \(x\) + 2 < 300 + 2 ⇒ 2 < \(x\) + 2 < 302
⇒ \(x\) + 2 \(\in\){60; 120; 180; 240; 300}
Lập bảng ta có:
\(x+2\) | 60 | 120 | 180 | 240 | 300 |
\(x\) | 58 | 118 | 178 | 238 | 298 |
Vậy \(x\) \(\in\){58; 118; 178; 238; 298}
Gọi số học sinh của khối đó là (học sinh) 0 < < 300; N
Theo bài ra ta có: ( + 2) 4; 5; 6
⇒ ( + 2) BC(4; 5; 6)
4 = 22; 5 = 5; 6 = 2.3 ⇒ BCNN(4; 5;6) = 22.3.5 = 60
⇒ BC(4;5;6) = {0; 60; 120; 180; 240; 300; 360; 420; ...;}
Vì 0< < 300 ⇒0< + 2 < 300 + 2 ⇒ 2 < + 2 < 302
⇒ + 2 {60; 120; 180; 240; 300}
Lập bảng ta có:
60 | 120 | 180 | 240 | 300 | |
58 | 118 | 178 | 238 | 298 |
Vậy {58; 118; 178; 238; 298}
a) \(5^2\cdot3^x=575\)
\(\Rightarrow3^x=\dfrac{575}{5^2}\)
\(\Rightarrow3^x=\dfrac{575}{25}\)
\(\Rightarrow3^x=23\)
Xem lại đề
b) \(5\cdot2^x-7^2=31\)
\(\Rightarrow5\cdot2^x=31+49\)
\(\Rightarrow5\cdot2^x=80\)
\(\Rightarrow2^x=\dfrac{80}{5}\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
c) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x\cdot\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=\dfrac{650}{26}\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
a, 52 x \(3^x\) = 575
3\(^x\) = 575 : 52
3\(^x\) = 23
nếu \(x\) ≤ 0 ta có 3\(^x\) ≤ 1 < 23 (loại) (1)
Nếu \(x\) ≥ 1 ⇒ 3\(^x\) ⋮ 3 \(\ne\) 23 vì 23 không chia hết cho 3 (2)
kết hợp (1) và(2) ta thấy không có giá trị nào của \(x\) thỏa mãn đề bài
Kết luận: \(x\in\varnothing\)
A = 1/(5.6) + 1/(6.7) + ... + 1/(24.25)
= 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/24 - 1/25
= 1/5 - 1/25
= 4/25
B = 2/(1.3) + 2/(3.5) + 2/(5.7) + ... + 2/(99.101)
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101
= 1 - 1/101
= 100/101
`a) A = 1/(5.6) + 1/(6.7)+...+1/(24.25)`
`= 1/5 - 1/6 + 1/6 - 1/7 +...+1/24-1/25`
`= 1/5-1/25`
`= 5/25 - 1/25`
`= 4/25`
Vậy:`A = 4/25`
`b) B = 2/(1.3)+2/(3.5)+...+2/(99.101)`
`= 1- 1/3 + 1/3 - .... +1/99-1/101`
`= 1 - 1/101`
`= 100/101`
Vậy: `B = 100/101`
a)\(-1,6:\left(1+\dfrac{2}{3}\right)=-1,6:\dfrac{5}{3}=-\dfrac{8}{5}.\dfrac{3}{5}=\dfrac{-24}{25}\)
b)\(\left(\dfrac{-2}{3}\right)+\dfrac{3}{4}-\left(-\dfrac{1}{6}\right)+\left(\dfrac{-2}{5}\right)=-\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{6}-\dfrac{2}{5}=\dfrac{-40+45+10-24}{60}=\dfrac{-9}{60}=\dfrac{-3}{20}\)
c)\(\left(\dfrac{-3}{7}:\dfrac{2}{11}+\dfrac{-4}{7}:\dfrac{2}{11}\right).\dfrac{7}{33}=\left(\dfrac{-3}{7}.\dfrac{11}{2}+\dfrac{-4}{7}.\dfrac{11}{2}\right).\dfrac{7}{33}=\left[\dfrac{11}{2}\left(\dfrac{-3}{7}+\dfrac{-4}{7}\right)\right].\dfrac{7}{33}=\dfrac{-11}{2}.\dfrac{7}{33}=\dfrac{-7}{6}\)
d)\(\dfrac{-5}{8}+\dfrac{4}{9}:\left(\dfrac{-2}{3}\right)-\dfrac{7}{20}.\left(\dfrac{-5}{14}\right)=\dfrac{-5}{8}-\dfrac{4}{9}.\dfrac{3}{2}+\dfrac{1}{8}=\dfrac{-5}{8}+\dfrac{1}{8}-\dfrac{2}{3}=-\dfrac{7}{6}\)
Nếu là tìm \(x;y\) nguyên để: (3\(x\) + 1).(3y + 1) = 81 thì em làm như này nhé:
(3\(x\) + 1).(3y + 1) = 81 (\(x\); y \(\in\) Z)
3\(x\) + 1 = \(\dfrac{81}{3y+1}\)
3\(x\) = \(\dfrac{81}{3y+1}\) - 1
3\(x\) = \(\dfrac{81-3y-1}{3y+1}\)
3\(x\) = \(\dfrac{80-3y}{3y+1}\)
Vì \(x\) nguyên nên 80 - 3y ⋮ 3y + 1
-3y - 1 + 81 ⋮ 3y + 1
81 ⋮ 3y + 1
3y + 1 \(\in\) Ư(81) = {-81; -27; -9; -3; -1; 1; 3; 9; 27; 81}
y \(\in\) { - \(\dfrac{82}{3}\); - \(\dfrac{28}{3}\); - \(\dfrac{10}{3}\); - \(\dfrac{4}{3}\); - \(\dfrac{2}{3}\); 0; \(\dfrac{2}{3}\); \(\dfrac{8}{3}\); \(\dfrac{26}{3}\); \(\dfrac{80}{3}\)}
Vì y nguyên nên y = 0; 3\(x\) = \(\dfrac{80-3.0}{1}\)
3\(x\) = 80
\(x\) = \(\dfrac{80}{3}\) (loại)
Vậy: (\(x\); y) \(\in\) \(\varnothing\)
Câu hỏi là j v bn?
Vẽ đường thẳng xy, lấy 2 điểm A, B trên đường thẳng xy
sao cho AB= 4cm
a) Nêu tên các tia gốc A có trên hình?
b) Lấy điểm C trên đường thẳng xy sao cho B nằm giữa A, C và AC
= 8cm. So sánh độ dài đoạn AB và BC?