Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sin 650=cos 350
\(cos70^0=sin30^0\)
\(tan80^0=cot20^0\)
\(cot68^0=tan32^0\)
\(P=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\\\)
Sau đó áp dung AM-GM và Cauchy-Schwartz
\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (Đk:\(a>0\))
\(=\dfrac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)
\(=a-\sqrt{a}\)
b) \(P=2\Leftrightarrow a-\sqrt{a}=2\Leftrightarrow a-\sqrt{a}-2=0\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=2\\\sqrt{a}=-1\left(vn\right)\end{matrix}\right.\)\(\Rightarrow a=4\) (tm)
Vậy a=4 thì P=2
c) \(P=a-\sqrt{a}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)
Vậy \(P_{min}=-\dfrac{1}{4}\)
Coi pt \(a-\sqrt{a}-2=0\) là pt ẩn \(\sqrt{a}\)
Hoặc e đặt \(t=\sqrt{a}\)
Pt tt: \(t^2-t-2=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=-1\\\sqrt{a}=2\end{matrix}\right.\)
Câu 3:
b: Tọa độ giao điểm là;
\(\left\{{}\begin{matrix}-3x+3=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)
a, \(\sqrt{x^2+3x+2}=\sqrt{x-1}\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+3x+2=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2x+3=0\left(VN\right)\end{matrix}\right.\) Vậy không có x tm đề bài
f, \(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
ĐK: x≥3/2
\(pt\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\dfrac{3}{2}\)(tm)
Vậy...
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
ĐK: \(\left\{{}\begin{matrix}x^2-9\ge0\\x^2-6x+9\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\Leftrightarrow x=3\left(tm\right)\)
h, \(pt\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)
TH1: x≥2, pt <=> \(x-1+x-2=3\Leftrightarrow2x-3=3\Leftrightarrow x=3\left(tm\right)\)
TH2: 1<x<2, pt<=>\(x-1+2-x=3\Leftrightarrow1=3\left(vl\right)\)
TH3: x≤1, pt<=>\(1-x+2-x=3\Leftrightarrow3-2x=3\Leftrightarrow x=0\left(tm\right)\)
Vậy S={0;2}
a. Giả sử: \(3+\sqrt{12}>\sqrt{16}\)
<=> \(\sqrt{12}>1\) (thỏa mãn)
Vậy \(3+\sqrt{12}>\sqrt{16}\)
b. \(4\sqrt{7}=\sqrt{4^2.7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
Ta thấy: 112 < 117
Vậy \(4\sqrt{7}< 3\sqrt{13}\)